转caffe scale layer

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/u011681952/article/details/86157481

Scale Layer是输入进行缩放和平移,常常出现在BatchNorm归一化后,Caffe中常用BatchNorm+Scale实现归一化操作(等同Pytorch中BatchNorm)

首先我们先看一下 ScaleParameter

message ScaleParameter {
      // The first axis of bottom[0] (the first input Blob) along which to apply
      // bottom[1] (the second input Blob).  May be negative to index from the end
      // (e.g., -1 for the last axis).
      // 根据 bottom[0] 指定 bottom[1] 的形状
      // For example, if bottom[0] is 4D with shape 100x3x40x60, the output
      // top[0] will have the same shape, and bottom[1] may have any of the
      // following shapes (for the given value of axis):
      //    (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
      //    (axis == 1 == -3)          3;     3x40;     3x40x60
      //    (axis == 2 == -2)                   40;       40x60
      //    (axis == 3 == -1)                                60
      // Furthermore, bottom[1] may have the empty shape (regardless of the value of
      // "axis") -- a scalar multiplier.
      // 例如,如果 bottom[0] 的 shape 为 100x3x40x60,则 top[0] 输出相同的 shape;
      // bottom[1] 可以包含上面 shapes 中的任一种(对于给定 axis 值). 
      // 而且,bottom[1] 可以是 empty shape 的,没有任何的 axis 值,只是一个标量的乘子.
      optional int32 axis = 1 [default = 1];
    
      // (num_axes is ignored unless just one bottom is given and the scale is
      // a learned parameter of the layer.  Otherwise, num_axes is determined by the
      // number of axes by the second bottom.)
      // (忽略 num_axes 参数,除非只给定一个 bottom 及 scale 是网络层的一个学习到的参数. 
      // 否则,num_axes 是由第二个 bottom 的数量来决定的.)
      // The number of axes of the input (bottom[0]) covered by the scale
      // parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
      // Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
      // bottom[0] 的 num_axes 是由 scale 参数覆盖的;
      optional int32 num_axes = 2 [default = 1];
    
      // (filler is ignored unless just one bottom is given and the scale is
      // a learned parameter of the layer.)
      // (忽略 filler 参数,除非只给定一个 bottom 及 scale 是网络层的一个学习到的参数.
      // The initialization for the learned scale parameter.
      // scale 参数学习的初始化
      // Default is the unit (1) initialization, resulting in the ScaleLayer
      // initially performing the identity operation.
      // 默认是单位初始化,使 Scale 层初始进行单位操作.
      optional FillerParameter filler = 3;
    
      // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but
      // may be more efficient).  Initialized with bias_filler (defaults to 0).
      // 是否学习 bias,等价于 ScaleLayer+BiasLayer,只不过效率更高
      // 采用 bias_filler 进行初始化. 默认为 0.
      optional bool bias_term = 4 [default = false];
      optional FillerParameter bias_filler = 5;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

Scale layer 在prototxt里面的书写:

layer {
     name: "scale_conv1"
     type: "Scale"
     bottom: "conv1"
     top: "conv1"
    
     scale_param {
        bias_term: true
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

例如在MobileNet中:

layer {
      name: "conv6_4/scale"
      type: "Scale"
      bottom: "conv6_4/bn"
      top: "conv6_4/bn"
      param {
        lr_mult: 1
        decay_mult: 0
      }
      param {
        lr_mult: 1
        decay_mult: 0
      }
      scale_param {
        bias_term: true
      }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

转载于:https://www.cnblogs.com/sdu20112013/p/11579739.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值