ns3_sumo环境搭建与学习2:sumo与ns3连接,生成trace导入ns3

一、输出netstate文件:ex_sumo.sumo.tr

 MySUMONet.net.xml+ex_ROU.rou.xml —〉ex_sumo.sumo.tr 

sudo sumo --net-file MySUMONet.net.xml --route-files ex_ROU.rou.xml --netstate-dump ex_sumo.sumo.tr

  • 如果是SUMO_GUI里仿真生成的ex_sumo.sumo.tr可能会报错“Message: XML 文档结构必须从头至尾包含在同一个实体内。”

、用traceExporter.jar生成所需文件:0.mobility.tcl(要用的主要就是这个)

traceExporter.py会报错“NoneType objectis not callable”,所以用traceExporter.jar

 ref:http://blog.csdn.net/jamexfx/article/details/53202825 traceExporter.py的解决办法

MySUMONet.net.xml+ex_sumo.sumo.tr —〉0.activity.tcl+0.mobility.tcl+0.config.tcl

sudo java -jar /share/traceExporter.jar ns2 -n MySUMONet.net.xml -t ex_sumo.sumo.tr -a 0.activity.tcl -m 0.mobility.tcl -c 0.config.tcl -p 1 -b 0 -e 1000

  •  

三、和ns3连接:利用ns2-mobility-trace

先在ns3/src/mobility/examples下找到ns2-mobility-trace,复制到ns3/scratch下

头文件加上ns3/netanim-module.h
Simulator::Stop (Seconds (duration));之前加上AnimationInterface("animation.xml");

sudo ./waf --run " scratch/ns2-mobility-trace --traceFile=/ns3/sumo/0.mobility.tcl --nodeNum=10 --duration=100.0 --logFile=ns2-mobility-trace.log"

  • --nodeNum和 ex_FLOW.flow.xml里的实际节点数要一样(10)
  • --duration和 ex_FLOW.flow.xml里的end时间也最好保持一致,和ex_SUMO.sumo.cfg的end时间类似

结果如图:

 

转载于:https://www.cnblogs.com/cyf1995/p/6595584.html

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用 PythonSUMO(Simulation of Urban MObility)与强化学习 Q-learning 结合的代码示例: ```python import traci import numpy as np # 定义 Q-learning 算法的相关参数 Q = np.zeros((num_states, num_actions)) alpha = 0.1 gamma = 0.6 epsilon = 0.1 # 定义状态和动作数量 num_states = ... num_actions = ... # 初始化 SUMO 环境 sumoCmd = ["sumo", "-c", "path/to/sumo/config/file"] traci.start(sumoCmd) # 开始执行 Q-learning 算法 for episode in range(num_episodes): # 重置环境并获取初始状态 traci.load(["-c", "path/to/sumo/config/file"]) state = ... # 执行 Q-learning 算法 while not done: # 使用 epsilon-greedy 策略选择动作 if np.random.uniform(0, 1) < epsilon: action = np.random.randint(0, num_actions) else: action = np.argmax(Q[state, :]) # 执行动作并获取下一个状态和奖励 reward = ... next_state = ... # 更新 Q 值 Q[state, action] = (1 - alpha) * Q[state, action] + alpha * (reward + gamma * np.max(Q[next_state, :])) # 进入下一个状态 state = next_state # 保存本次训练结果 ... # 结束 SUMO 环境 traci.close() ``` 在此示例代码中,我们使用了 Q-learning 算法来控制 SUMO 的交通流,其中 Q 表示状态-动作对的价值,alpha 表示学习率,gamma 表示折扣因子,epsilon 表示 epsilon-greedy 策略中的 epsilon。我们首先初始化了 Q 值表,然后使用 epsilon-greedy 策略选择动作,执行动作并获取下一个状态和奖励,然后更新 Q 值。在每个 episode 结束后,我们保存了本次训练结果。最后,我们结束了 SUMO 环境。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值