数据结构---栈与队列

栈和队列

我们以下的使用的栈或队列都是作为一个工具来解决其他问题的,我们可以把栈或队列的声明和操作写的很简单,而不必分函数写出。

  • 顺序栈
    1. 声明一个栈并初始化
      ElemType stack[maxSize];    //存放栈中的元素
      int top = -1;   //栈顶指针(指向栈顶元素)
    1. 元素进栈
      stack[++top] = x;
    1. 元素出栈
      x = stack[top--];
    1. 判断栈空:
      top == -1;  //栈空
      top > -1;   //栈非空
  • 顺序队列
    1. 声明一个队列并初始化
      ElemType queue[maxSize];    //存放队列中元素
      int front = -1, rear = -1;  //队头(指向队头元素的前一个位置),队尾(指向队尾元素)
    1. 元素入队
      queue[++rear] = x;
    1. 元素出队
      x = queue[++front];
    1. 判断队空:
      front == rear;  //队空
      front < rear;   //队非空

卡特兰(Catalan)数\(1/(n+1)C^n_{2n}\)
应用:对于n个不同元素进栈,出栈序列的个数为\(1/(n+1)C^n_{2n}\)

  • 栈的应用:括号匹配、表达式求值(后缀表达式)、递归、迷宫求解等。

顺序栈

  • 基本概念:
    采用顺序存储的栈称为顺序栈,它利用一组地址连续的存储单元存放自栈底到栈顶的数据元素,同时附设一个指针(top)指向当前栈顶的位置。

  • 存储结构:
#define MaxSize 50      //定义栈中元素的最大个数
typedef struct {
    ElemType data[MaxSize]; //存放栈中元素
    int top;    //栈顶指针
}SqStack;       //Sequence Stack
  • 基本操作:
    • 栈顶指针:S.top,初始时设置S.top=-1;(即 指向了栈顶元素)
    • 栈顶元素:S.data[S.top];
    • 进栈操作:栈不满是,栈顶指针先加1,再送值到栈顶元素;
    • 出栈操作:栈非空时,先取栈顶元素值,再将栈顶指针减1;
    • 栈空条件:S.top == -1;
    • 栈满条件:S.top == MaxSize-1;
    • 栈长:S.top+1

共享栈

  • 基本概念:
    利用栈底位置相对不变的特性,可让两个顺序栈共享一个一维数据空间,将两个站的栈底分别设置在共享空间的两端,两个栈顶向共享空间的中间延伸

  • 基本操作:
    • 栈空条件
      • 0号栈:top0=-1
      • 1号栈:top1=MaxSize
    • 栈满条件:top1 - top0 = 1(即 当两个栈顶指针相邻时栈满)

    • 进栈操作
      • 0号栈:top0先加1再赋值
      • 1号栈:top1先减1再赋值
    • 出栈操作:栈非空时,
      • 0号栈:先取栈顶元素值,再将top0减1;
      • 1号栈:先取栈顶元素值,再将top1加1

链栈

  • 基本概念:
    采用链式存储的栈称为链栈,通常采用单链表实现,并规定所有操作都是在单链表的表头进行的。

  • 存储结构:
typedef struct LinkNode {
    ElemType data;  //数据域
    struct LinkNode *next;  //指针域
}*LiStack;  //List Stack
  • 优点:
    便于多个栈共享存储空间和提高其效率,且不存在栈满上溢的情况。便于结点的插入与删除。

队列

  • 队列的应用:层次遍历、解决主机与外部设备之间速度不匹配的问题、解决由多用户引起的资源竞争的问题、页面替换算法等。

顺序队列

  • 基本概念:
    队列的顺序实现是指分配一块连续的存储单元存放队列中的元素,并附设两个指针front和rear分别指向队头元素和队尾元素的位置。(这里队头指针指向队头元素的前一个位置队尾指针指向队尾元素)(避免队空与队列中只有一个元素时无法区分)

  • 存储结构:
#define MaxSize 50      //定义栈中元素的最大个数
typedef struct {
    ElemType data[MaxSize]; //存放队列元素
    int front, rear;        //队头指针和队尾指针
}SqQueue;   //Sequence Queue
  • 基本操作:
    • 初始状态;Q.front = -1; Q.rear = -1;
    • 队空条件:Q.front == Q.rear; (因为队头指针指向队头元素的前一个位置,所以当与队尾指针相等时,队空)
    • 进队操作:队不满时,先送值到队尾元素,再将队尾指针加1;
    • 出队操作:队不空时,先取队头元素值,再将队头指针加1;
    • 队满条件无法判断队满,当rear > maxsize-1,front > -1时,其实队中依然有空位(front之前还有空位)可以存放元素,只是由于被指针欺骗了,这种现象称为“假溢出”

循环队列

  • 基本概念:
    将顺序队列臆造为一个环状的空间,即吧存储队列元素的表从逻辑上视为一个环,称为循环队列。当队首指针Q.front=MaxSize-1后,再前进一个位置就自动到0,利用取余运算(%)。

  • 基本操作:
    • 初始时:Q.front = Q.rear = 0;
    • 入队操作:Q.rear = (Q.rear+1)%MaxSize; (在队尾排队)
    • 出队操作:Q.front = (Q.front+1)%MaxSize; (在队头出队)
    • 队列长度:(Q.rear+MaxSize-Q.front)%MaxSize。
    • 出队入队时:指针都按顺时针方向进1

    但是无法区分队空与队满(都为Q.front == Q.rear)

    为了区分队空队满的情况,有三种处理方式:
    1. 牺牲一个单元来区分队空队满,入队时少用一个队列单元。约定以“队头指针在队尾指针的下一位置作为队满的标志”
      • 队满条件:(Q.rear+1)%MaxSize == Q.front;
      • 队空条件:Q.front == Q.rear;
      • 队列中元素的个数:(Q.rear-Q.front+MaxSize)%MaxSize。
    2. 类型中增设表示元素个数的数据成员。
      • 队空条件:Q.size == 0;
      • 队满条件:Q.size == MaxSize。

        这两种情况都有Q.front == Q.rear。

    3. 类型中增设tag数据成员,以区分是队满还是队空。
      • 队空条件:tag == 0时,若因删除导致Q.front == Q.rear,则为队空;
      • 队满条件:tag == 1时,若因插入导致Q.front == Q.rear,则为队满。

链队列

  • 基本概念:
    队列的链式表示称为链队列,它实际上是一个同时带有队头指针和队尾指针的单链表(通常设计成带头结点的单链表,方便操作)。头指针指向队头结点尾指针指向队尾结点,即单链表的最后一个结点(注意与顺序队列不同)。

  • 存储结构:
typedef struct LinkNode{//链式队列结点
    ElemType data;      
    struct LinkNode *next;
}LinkNode;

typedef struct {    //链式队列
    LinkNode *front, *rear;     //队列的队头和队尾指针
}LinkQueue;
  • 基本操作:
    • 初始化:Q.front = Q.rear = 头结点;
    • 队空条件:Q.front == NULL且Q.rear == NULL;
    • 入队操作:尾插法;
    • 出队操作:删除头。
  • 适用性:
    链队列特别适合于数据元素变动比较大的情形,而且不存在队列满且产生溢出的问题。
    另外,假如程序中要使用多个队列,与多个栈的情形一样,最好使用链队列,这样就不会出现存储分配不合理“溢出”的问题。

双端队列

  • 基本概念:
    双端队列是指允许两端都可以进行入队和出队操作的队列。

转载于:https://www.cnblogs.com/blknemo/p/11306065.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值