fhq Treap

我吹爆fhq,磨了一下午无旋treap,怕遗忘,写点细节。

  • fhq treap中有重复的点,它们呈一条链排列,所以del时不能完全砍掉:z树是一条相同权值点的链。下方第6行,只会将z根这一点砍掉(调用merge实际上会直接返回左子树的编号,见代码)
1 void del(int &root,int val)
2 {
3     int x=0,y=0,z=0;
4     split(root,x,y,val);
5     split(x,x,z,val-1);
6     merge(z,tr[z].lc,tr[z].rc);        //重复的点 
7     merge(x,x,z);
8     merge(root,x,y);
9 }
  • 权值分裂和位置分裂(a kth 都<=k)对于BST能达到同样的效果,像文艺平衡树这种只保留位置的只能用位置分裂。以下两种分裂:
void split(int x,int &a,int &b,int val)            //权值分裂
{
    if(!x){
        a=b=0;
        return;
    }
    if(tr[x].val<=val){
        a=x;                                //x的左子树都能放到a的左子树 
        split(tr[x].rc,tr[a].rc,b,val);        //递归找a的右子树(rc一定大于fa[rc])和b(↓) 
    }
    else{
        b=x;
        split(tr[x].lc,a,tr[b].lc,val);
    }
    up(x);
}
 1 void split(int x,int &a,int &b,int k)
 2 {
 3     if(!x){
 4         a=b=0;
 5         return;
 6     }
 7     down(x);
 8     if(k<=tr[tr[x].lc].siz){        //a已满先找b   //如果x恰好是划分点(恰好x左子树为a),则x及x的右子树为b树,递归下一层将tr[x].lc付给a 
 9         b=x;
10         split(tr[x].lc,a,tr[b].lc,k);
11     }
12     else{
13         a=x;
14         split(tr[x].rc,tr[a].rc,b,k-tr[tr[x].lc].siz-1);
15     }
16     up(x);
17 }

个人感觉位置分裂比较难理解且难记呃,9行实际上可以理解为a树能被x的左子树填满,但此时x的左子树中还可能有大于rank>k的值,所以显然不能直接将x.lc直接付给a。

附:

#include<cstdio>
#include<ctime>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#define MAXN 200005
#define reg register
#define F(i,a,b) for(i=a;i<=b;++i)
using namespace std;
int o,root;
struct TR{
    int val,rd,siz,lc,rc;
}tr[MAXN];
int newnode(int val)
{
    int x=++o;
    tr[x].val=val;
    tr[x].rd=rand();
    tr[x].siz=1;
    return x;
}
void up(int x)
{
    tr[x].siz=tr[tr[x].lc].siz+tr[tr[x].rc].siz+1;
}
void split(int x,int &a,int &b,int val)
{
    if(!x){
        a=b=0;
        return;
    }
    if(tr[x].val<=val){
        a=x;                                //x的左子树都能放到a的左子树 
        split(tr[x].rc,tr[a].rc,b,val); //递归找a的右子树(rc一定大于fa[rc])和b(↓) 
    }
    else{
        b=x;
        split(tr[x].lc,a,tr[b].lc,val);
    }
    up(x);
}
void merge(int &x,int a,int b)
{
    if(a*b==0){
        x=a+b;
        return;
    }
    if(tr[a].rd<tr[b].rd){
        x=a;                            //x及x的左子树确定,b放在x(a)的右子树上(b的每个节点都大于a) 
        merge(tr[x].rc,tr[a].rc,b);
    }
    else{
        x=b;                            //x及x的右子树确定,同理 
        merge(tr[x].lc,a,tr[b].lc);
    }
    up(x);
}
void insert(int &root,int val)
{
    int x=0,y=0;
    split(root,x,y,val);
    merge(x,x,newnode(val));
    merge(root,x,y);
}
void del(int &root,int val)
{
    int x=0,y=0,z=0;
    split(root,x,y,val);
    split(x,x,z,val-1);
    merge(z,tr[z].lc,tr[z].rc);                //重复的点 
    merge(x,x,z);
    merge(root,x,y);
}
int kth(int rt,int k)
{
    int x=rt;
    while(tr[tr[x].lc].siz+1!=k)
    {
        if(k<=tr[tr[x].lc].siz) x=tr[x].lc;
        else k-=tr[tr[x].lc].siz+1,x=tr[x].rc;
    }
    return tr[x].val;
}
int rak(int &root,int val)
{
    int x=0,y=0;
    split(root,x,y,val-1);
    int ans=tr[x].siz+1;
    merge(root,x,y);
    return ans;
}
int pre(int &root,int val)
{
    int x=0,y=0;
    split(root,x,y,val-1);
    int ans=kth(x,tr[x].siz);
    merge(root,x,y);
    return ans;
}
int nex(int &root,int val)
{
    int x=0,y=0;
    split(root,x,y,val);
    int ans=kth(y,1);
    merge(root,x,y);
    return ans;
}
void dfs(int now){
    if(!now) return;
    dfs(tr[now].lc);
    printf("%d ",tr[now].val);
    dfs(tr[now].rc);
}
int main()
{
    srand(time(0));
    int n; scanf("%d",&n);
    reg int op,x;
    while(n--)
    {
        scanf("%d%d",&op,&x);
        switch(op){
            case 1:insert(root,x);break;
            case 2:del(root,x);break;
            case 3:printf("%d\n",rak(root,x));break;
            case 4:printf("%d\n",kth(root,x));break;
            case 5:printf("%d\n",pre(root,x));break;
            case 6:printf("%d\n",nex(root,x));break;
            case 7:dfs(root);puts("");break;
        }
    }
    return 0;
}
模板
#include<cstdio>
#include<ctime>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#define MAXN 100005
#define reg register
#define F(i,a,b) for(i=a;i<=b;++i)
using namespace std;
int o,f[MAXN],root;
struct TR{
    int lc,rc,siz,rd,val;
}tr[MAXN];
int newnode(int val)
{
    int x=++o;
    tr[x].val=val;
    tr[x].rd=rand();
    tr[x].siz=1;
    return x;
}
void up(int k)
{
    tr[k].siz=tr[tr[k].lc].siz+tr[tr[k].rc].siz+1;
}
void down(int k)
{
    if(f[k]){
        swap(tr[k].lc,tr[k].rc);
        f[tr[k].lc]^=1;
        f[tr[k].rc]^=1;
        f[k]=0;
    }
}
void split(int x,int &a,int &b,int k)
{
    if(!x){
        a=b=0;
        return;
    }
    down(x);
    if(k<=tr[tr[x].lc].siz){        //a已满先找b   //如果x恰好是划分点(恰好x左子树为a),则x及x的右子树为b树,递归下一层将tr[x].lc付给a 
        b=x;
        split(tr[x].lc,a,tr[b].lc,k);
    }
    else{
        a=x;
        split(tr[x].rc,tr[a].rc,b,k-tr[tr[x].lc].siz-1);
    }
    up(x);                    //eee
}
void merge(int &x,int a,int b)
{
    if(a*b==0){
        x=a+b;
        return;
    }
    down(a); down(b);
    if(tr[a].rd<tr[b].rd){
        x=a;
        merge(tr[x].rc,tr[a].rc,b);
    }
    else{
        x=b;
        merge(tr[x].lc,a,tr[b].lc);
    }
    up(x);
}
void work(int l,int r)
{
    int x=0,y=0,z=0;
    split(root,x,y,r);
    split(x,x,z,l-1);
    f[z]^=1;
    merge(x,x,z);
    merge(root,x,y);
}
void dfs(int x){
    if(!x) return;
    down(x);
    dfs(tr[x].lc);
    printf("%d ",tr[x].val);
    dfs(tr[x].rc);
}
int main()
{
    srand(time(0));
    int n;
    reg int i,a,b,m;
    scanf("%d%d",&n,&m);
    F(i,1,n) merge(root,root,newnode(i));
    while(m--)
    {
        scanf("%d%d",&a,&b);
        work(a,b);
    }
    dfs(root);
    return 0;
}
文艺平衡树

 文艺线段树实际上是对下标进行操作,于是对权值来说不满足BST性质,siz[]只是用来标记节点的区间大小以便二分,split是对位置的分离,merge()不会改变中序遍历,所以可以做到区间合并甚至在两个数间插入一个数。于是我们就可以配合懒标记进行很多区间操作,例如区间加、区间最值、区间翻转等等,但由于以上操作破坏了BST性质不能支持kth、rank。

转载于:https://www.cnblogs.com/hzoi-yzh/p/11011287.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
可持久化splay是一种数据结构,它是对splay树进行修改和查询的一种扩展。在传统的splay树中,对树的修改操作会破坏原有的树结构,而可持久化splay树则允许我们对树进行修改、查询,并且可以保存修改后的每个版本的树结构。 在可持久化splay树中,我们不会直接对原树进行修改,而是通过复制每个节点来创建新的版本。这样,每个版本都可以独立地修改和查询,保留了原有版本的结构和状态。每个节点保存了其左子树和右子树的引用,使得可以在不破坏原有版本的情况下进行修改和查询。 为了实现可持久化splay树,我们可以使用一些技巧,比如引用中提到的哨兵节点和假的父节点和孩子节点。这些技巧可以帮助我们处理根节点的旋转和其他操作。 此外,可持久化splay树还可以与其他数据结构相结合,比如引用中提到的可持久化线段树。这种结合可以帮助我们解决更复杂的问题,比如区间修改和区间查询等。 对于可持久化splay树的学习过程,可以按照以下步骤进行: 1. 理解splay树的基本原理和操作,包括旋转、插入、删除和查找等。 2. 学习如何构建可持久化splay树,包括复制节点、更新版本和保存历史版本等。 3. 掌握可持久化splay树的常见应用场景,比如区间修改和区间查询等。 4. 深入了解与可持久化splay树相关的其他数据结构和算法,比如可持久化线段树等。 在解决问题时,可以使用二分法来确定答案,一般称为二分答案。通过对答案进行二分,然后对每个答案进行检查,以确定最终的结果。这种方法可以应用于很多问题,比如引用中提到的在线询问问题。 综上所述,可持久化splay是一种对splay树进行修改和查询的扩展,可以通过复制节点来创建新的版本,并且可以与其他数据结构相结合解决更复杂的问题。学习过程中可以按照一定的步骤进行,并且可以使用二分法来解决一些特定的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [[学习笔记]FHQ-Treap及其可持久化](https://blog.csdn.net/weixin_34283445/article/details/93207491)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [可持久化数据结构学习笔记](https://blog.csdn.net/weixin_30376083/article/details/99902410)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值