K 凸函数的一些性质和相关证明

一、K 凸函数的定义:

定义1 ∀ a,b>0\quad\forall~ a, b>0 a,b>0
K+f(a+x)−f(x)−a{f(x)−f(x−b)b}≥0K+f(a+x)-f(x)-a\Big\{\frac{f(x)-f(x-b)}{b}\Big\}\geq 0K+f(a+x)f(x)a{bf(x)f(xb)}0
定义2∀ a>0\quad\forall~ a>0 a>0
K+f(a+x)−f(x)−af′(x)≥0K+f(a+x)-f(x)-af'(x)\geq 0K+f(a+x)f(x)af(x)0
定义3∀ 0&lt;μ&lt;1\quad\forall~ 0&lt;\mu&lt;1 0<μ<1
μf(x1)+(1−μ)(f(x2)+K)≥f(μx1+(1−μ)x2)\mu f(x_1)+(1-\mu)(f(x_2)+K)\geq f(\mu x_1+(1-\mu)x_2)μf(x1)+(1μ)(f(x2)+K)f(μx1+(1μ)x2)

定义3 其实由定义1 改造而来,只要令 x1=x−bx_1=x-bx1=xb, x2=x+ax_2=x+ax2=x+a, μ=aa+b\mu=\frac{a}{a+b}μ=a+ba 即可。

还有一个 CK 凸函数,它针对能力约束问题,此时, 0&lt;a≤C0&lt;a\leq C0<aC, 0&lt;b≤C0&lt;b\leq C0<bC

二、一个 K 凸函数图像:

这里写图片描述

三、sss, SSS 的定义

fff 为在定义域 [A,B][A, B][A,B] 上的一个 K 凸函数,f∗f^\astf 为其在定义域内的最小值,

S={x∣f(x)=f∗}s=min⁡{x∣f(x)≤f∗+K,x≤B} \begin{aligned} S&amp;=\{x\mid f(x)=f^\ast\}\\ s&amp;=\min\{x\mid f(x)\leq f^\ast+K, x\leq B\} \end{aligned} Ss={xf(x)=f}=min{xf(x)f+K,xB}
注:sss 可能不在定义域内。

四、K-凸函数的相关性质

1. f(x)f(x)f(x) 在区间 [A,s][A, s][A,s] 上单调递减.

证明:当 x&lt;sx&lt;sx<s 时,根据 sss 的定义,显然 f(x)&gt;f(S)+Kf(x)&gt;f(S)+Kf(x)>f(S)+K。令 x+a=Sx+a=Sx+a=S,则根据定义1 或定义 2,当 x&lt;sx&lt;sx<s 时,
af′(x)≤K+f(S)−f(x)&lt;0af&#x27;(x)\leq K+f(S)-f(x)&lt;0af(x)K+f(S)f(x)<0
因此 f(x)f(x)f(x) 在区间 [A,s][A, s][A,s] 上单调递减。

2. 对任意 s&lt;x1&lt;x2s&lt;x_1&lt;x_2s<x1<x2,都有 f(x2)+K≥f(x1)f(x_2)+K\geq f(x_1)f(x2)+Kf(x1).

证明:
(1) 若 x2&gt;x1≥Sx_2&gt;x_1\geq Sx2>x1Sx1&lt;x2≤Sx_1&lt;x_2\leq Sx1<x2S, 在定义1 中令 x−b=Sx-b=Sxb=S, x+a=x2x+a=x_2x+a=x2, x=x1x=x_1x=x1,得到:
K+f(x2)−f(x1)−(x2−x1){f(x1)−f(S)x1−S}≥0⇒  K+f(x2)−f(x1)≥(x2−x1){f(x1)−f(S)x1−S}⇒  K+f(x2)−f(x1)≥0(since  f(x1)≥f(S)) \begin{aligned} &amp;K+f(x_2)-f(x_1)-(x_2-x_1)\Big\{\frac{f(x_1)-f(S)}{x_1-S}\Big\}\geq 0\\ \Rightarrow~~&amp;K+f(x_2)-f(x_1)\geq (x_2-x_1)\Big\{\frac{f(x_1)-f(S)}{x_1-S}\Big\}\\ \Rightarrow~~&amp;K+f(x_2)-f(x_1)\geq 0\quad\big (\text{since}~~f(x_1)\geq f(S)\big ) \end{aligned}     K+f(x2)f(x1)(x2x1){x1Sf(x1)f(S)}0K+f(x2)f(x1)(x2x1){x1Sf(x1)f(S)}K+f(x2)f(x1)0(since  f(x1)f(S))
(2) 若 x1&lt;S&lt;x2x_1&lt;S&lt;x_2x1<S<x2,在定义1 中令 x+a=Sx+a=Sx+a=S, x−b=sx-b=sxb=s, x=x1x=x_1x=x1,得到:
K+f(S)−f(x1)−(S−x1){f(x1)−f(s)x1−s}≥0⇒  K+f(S)−f(x1)≥(S−x1){f(x1)−f(S)−Kx1−s}⇒  K+f(S)−f(x1)≥0⇒K+f(x2)−f(x1)≥0(since  f(x2)≥f(S))\begin{aligned} &amp;K+f(S)-f(x_1)-(S-x_1)\Big\{\frac{f(x_1)-f(s)}{x_1-s}\Big\}\geq 0\\ \Rightarrow~~&amp;K+f(S)-f(x_1)\geq (S-x_1)\Big\{\frac{f(x_1)-f(S)-K}{x_1-s}\Big\}\\ \Rightarrow~~&amp;K+f(S)-f(x_1)\geq 0\quad\Rightarrow K+f(x_2)-f(x_1)\geq 0\quad\big (\text{since}~~f(x_2)\geq f(S)\big ) \end{aligned}    K+f(S)f(x1)(Sx1){x1sf(x1)f(s)}0K+f(S)f(x1)(Sx1){x1sf(x1)f(S)K}K+f(S)f(x1)0K+f(x2)f(x1)0(since  f(x2)f(S))□\Box

对任意 s&lt;x1&lt;x2s&lt;x_1&lt;x_2s<x1<x2,当然也满足 K-凸条件:K+f(x2)≥f(x1)+(x2−x1)f(x1)−f(x1−b)bK+f(x_2)\geq f(x_1)+(x_2-x_1)\frac{f(x_1)-f(x_1-b)}{b}K+f(x2)f(x1)+(x2x1)bf(x1)f(x1b)

3. 在定义域 [A,B][A, B][A,B] 上的最优订货策略为 (s,S)(s, S)(s,S), 即:

g(x)=inf⁡y≥x,A≤y≤B[Kδ(y−x)+f(y)]={f(S)+Kx&lt;sf(x)x≥s\begin{aligned} g(x)=&amp;\inf_{y\geq x, A\leq y\leq B} \big [K\delta (y-x)+f(y)\big ]\\ =&amp;\begin{cases} f(S)+K\quad &amp;x&lt;s\\ f(x)\quad &amp;x\geq s \end{cases} \end{aligned}g(x)==yx,AyBinf[Kδ(yx)+f(y)]{f(S)+Kf(x)x<sxs

需要证明 当 f(x)f(x)f(x) 为 k 凸函数时,g(x)g(x)g(x) 为 k 凸函数。
证明:我们需证明 g(x)g(x)g(x) 满足定义1. 对任意三个点 x−bx-bxb, xxx, x+ax+ax+a
一共有以下四种情况:
(1) 若 x−b≥sx-b\geq sxbs 时,
K+g(x+a)−g(x)−a{g(x)−g(x−b)b}=K+f(x+a)−f(x)−a{g(x)−g(x−b)b}\begin{aligned} &amp;K+g(x+a)-g(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\}\\ =&amp;K+f(x+a)-f(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\} \end{aligned}=K+g(x+a)g(x)a{bg(x)g(xb)}K+f(x+a)f(x)a{bg(x)g(xb)}
上式就是 f(x)f(x)f(x) K凸函数的定义,显然成立。

(2) 若 x+a&lt;sx+a&lt; sx+a<s 时,
K+g(x+a)−g(x)−a{g(x)−g(x−b)b}=K+f(S)+K−f(S)−K−a{f(S)+K−f(S)−Kb}=0\begin{aligned} &amp;K+g(x+a)-g(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\}\\ =&amp;K+f(S)+K-f(S)-K-a\Big\{\frac{f(S)+K-f(S)-K}{b}\Big\}\\ =&amp;0 \end{aligned}==K+g(x+a)g(x)a{bg(x)g(xb)}K+f(S)+Kf(S)Ka{bf(S)+Kf(S)K}0
上式显然是 K凸函数。

(3) 若 x−b&lt;x&lt;s&lt;x+ax-b&lt;x&lt;s&lt;x+axb<x<s<x+a 时,
K+g(x+a)−g(x)−a{g(x)−g(x−b)b}=K+f(x+a)−f(S)−K−a{f(S)+K−f(S)−Kb}=f(x+a)−f(S)≥0\begin{aligned} &amp;K+g(x+a)-g(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\}\\ =&amp;K+f(x+a)-f(S)-K-a\Big\{\frac{f(S)+K-f(S)-K}{b}\Big\}\\ =&amp;f(x+a)-f(S)\geq 0 \end{aligned}==K+g(x+a)g(x)a{bg(x)g(xb)}K+f(x+a)f(S)Ka{bf(S)+Kf(S)K}f(x+a)f(S)0
为 K凸函数。

(4) 若 x−b&lt;s&lt;xx-b&lt;s&lt;xxb<s<x 时,
K+g(x+a)−g(x)−a{g(x)−g(x−b)b}=K+f(x+a)−f(x)−a{f(x)−f(S)−Kb}≥K+f(x+a)−f(x)−a{f(x)−f(s)b}\begin{aligned} &amp;K+g(x+a)-g(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\}\\ =&amp;K+f(x+a)-f(x)-a\Big\{\frac{f(x)-f(S)-K}{b}\Big\}\\ \geq &amp;K+f(x+a)-f(x)-a\Big\{\frac{f(x)-f(s)}{b}\Big\} \end{aligned}=K+g(x+a)g(x)a{bg(x)g(xb)}K+f(x+a)f(x)a{bf(x)f(S)K}K+f(x+a)f(x)a{bf(x)f(s)}

根据性质2, K+f(x+a)−f(x)≥0K+f(x+a)-f(x)\geq 0K+f(x+a)f(x)0
f(x)≤f(s)f(x)\leq f(s)f(x)f(s),上式显然大于等于零。
f(x)&lt;f(s)f(x)&lt; f(s)f(x)<f(s),根据性质 1,可以得出 x&gt;sx&gt;sx>s,又因为 x−b&lt;sx-b&lt;sxb<s,即 b&gt;x−sb&gt;x-sb>xs,上述表达式可以变为:
K+f(x+a)−f(x)−a{f(x)−f(s)b}≥K+f(x+a)−f(x)−a{f(x)−f(s)x−s}\begin{aligned} &amp;K+f(x+a)-f(x)-a\Big\{\frac{f(x)-f(s)}{b}\Big\}\\ \geq &amp;K+f(x+a)-f(x)-a\Big\{\frac{f(x)-f(s)}{x-s}\Big\} \end{aligned}K+f(x+a)f(x)a{bf(x)f(s)}K+f(x+a)f(x)a{xsf(x)f(s)}

刚好为 K凸函数的定义,因此也大于等于零。

综合以上,在四种情况下,g(x)g(x)g(x) 均为 K 凸函数。□\Box

4. 若 ggg 为一个 K-凸函数,则 fff 也是一个 K-凸函数,其中 fff

f(x)=min⁡x≤y≤x+Rg(y)f(x)=\min_{x\leq y\leq x+R}g(y)f(x)=xyx+Rming(y)

证明:
我们需要证明
f(μx1+(1−μ)x2)≤μf(x1)+(1−μ)(f(x2)+K)f(\mu x_1+(1-\mu)x_2)\leq \mu f(x_1)+(1-\mu)(f(x_2)+K)f(μx1+(1μ)x2)μf(x1)+(1μ)(f(x2)+K)

f(x)=g(x+β(x)R)f(x)=g\big(x+\beta(x)R\big)f(x)=g(x+β(x)R),其中 β(x)∈[0,1]\beta(x)\in [0,1]β(x)[0,1],则
min⁡0≤z≤Rg(μx1+(1−μ)x2+z)≤g(μx1+(1−μ)x2+μβ(x1)R+(1−μ)β(x2)R)\begin{aligned}&amp;\min_{0\leq z\leq R}g(\mu x_1+(1-\mu)x_2+z)\\ &amp;\leq g\big(\mu x_1+(1-\mu)x_2+\mu\beta(x_1)R+(1-\mu)\beta(x_2)R\big) \end{aligned}0zRming(μx1+(1μ)x2+z)g(μx1+(1μ)x2+μβ(x1)R+(1μ)β(x2)R)

上面这一步很巧, 利用构造函数去掉了 min 对分析函数性质的影响,也最重要,下面使用时结合了 f(x)f(x)f(x) 的定义(第一个小于等于号,稍微有点绕)

因此
f(μx1+(1−μ)x2)=g(μx1+(1−μ)x2+β(μx1+(1−μ)x2)R)≤g(μx1+(1−μ)x2+μβ(x1)R+(1−μ)β(x2)R)=g(μ(x1+β(x1)R)+(1−μ)(x2+β(x2)R))≤μg(x1+β(x1)R)+(1−μ)(g(x2+β(x2)R)+K))=μf(x1)+(1−μ)(f(x2)+K)\begin{aligned}f(\mu x_1+(1-\mu)x_2)&amp;=g\big(\mu x_1+(1-\mu)x_2+\beta(\mu x_1+(1-\mu)x_2)R\big)\\ &amp;\leq g\big(\mu x_1+(1-\mu)x_2+\mu\beta(x_1)R+(1-\mu)\beta(x_2)R\big)\\ &amp;=g\big(\mu(x_1+\beta(x_1)R)+(1-\mu)(x_2+\beta(x_2)R)\big)\\ &amp;\leq\mu g(x_1+\beta(x_1)R)+(1-\mu)(g(x_2+\beta(x_2)R)+K))\\ &amp;=\mu f(x_1)+(1-\mu)(f(x_2)+K) \end{aligned}f(μx1+(1μ)x2)=g(μx1+(1μ)x2+β(μx1+(1μ)x2)R)g(μx1+(1μ)x2+μβ(x1)R+(1μ)β(x2)R)=g(μ(x1+β(x1)R)+(1μ)(x2+β(x2)R))μg(x1+β(x1)R)+(1μ)(g(x2+β(x2)R)+K))=μf(x1)+(1μ)(f(x2)+K)
得证 □\qquad\Box

转载于:https://www.cnblogs.com/robinchen/p/11047568.html

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值