凸函数性质

一 基本性质

凸函数定义

在这里插入图片描述
一个函数是凸的,当且仅当其在与其定义域相交的任何直线上都是凸的。
如果是在高维空间的话,我们可以引进新的定义

在这里插入图片描述
凸函数的第三个性质:一阶条件

在这里插入图片描述
我们可以通过下面的图片理解凸函数的一阶条件:
在这里插入图片描述
一个空间中的集合如果是凸的,那么经过拉伸变形旋转仍然是凸集。
也就是说,缩放与移位后的集合仍然保持凸性。公式表示如下:
在这里插入图片描述

举个栗子:两个凸集的和是凸的

在这里插入图片描述
假设有两个集合s1和s2,两个集合相加等同于两个集合中的元素相加。如果s1,s2是凸集的话,那么这两个集合的合也是凸集。
下面我们通过仿射的角度看看这个问题:
定义新集合在这里插入图片描述如果s1和s2是凸集,那么上面的新几何也是凸集。其中(x,y)是新集合的变量,我们可以定义新变换f(x,y)=x+y。这是一个线性变换,那么新集合可以证明也是凸集。

举个栗子2:线性矩阵不等式LMI

在这里插入图片描述
我们来验证在这里插入图片描述是凸集。
首先定义一个仿射变换F(x)=B-A(x)。并且我们知道此变换对半正定矩阵在这里插入图片描述是凸集。将这两个式子组合在一起有在这里插入图片描述。图中f是高维的矩阵空间映射到低维的矩阵空间,f^-1是从低维的矩阵空间映射到高维的矩阵空间。将低维的半正定矩阵S+映射到灯饰的右边。因为左边是凸集,f是仿射的映射,那么将他做逆映射之后构成的集合还是凸集。那么我们已经证明了线性矩阵的解集也是凸集。

透视函数

透视函数定义域如下在这里插入图片描述表示前n个元素都可以在实数空间任意取值,但是最后一个元素必须是一个正数。
透视函数的定义如下:在这里插入图片描述通俗理解就是p中的每一个元素都除以最后一个元素,除完后最后一个元素就没用了。去掉最后一个元素,函数就变成了n维了,也就进行了降维。

如何证明凸函数的一阶条件

先来回顾一下什么是一阶条件
在这里插入图片描述
用图像来说明一下一阶条件:
在这里插入图片描述
如图,在凸函数上任取两点(x,f(x)),(y,f(y)),对x点求偏导。则x点处的偏导*(y-x)则表示如图y点下方的那段距离,因而f(y)≥f(x)+f’(x)(y-x).
具体证明如下:
正向证明::当f为凸函数,对于任意的x,y∈dom f也是凸集时,任意的t∈(0,1],肯定有x+t(y-x)∈dom f
在这里插入图片描述
那么当t->0时,取极限则有不等式成立。
反向证明::
在这里插入图片描述
凸函数的最后一个定义:

二阶条件

在这里插入图片描述
也就是二阶偏导必须≥0,也就是海森矩阵必须满足半正定条件。

函数的组合如何保证其凸性

如何判断复合函数是不是凸的?

首先看什么是函数组合
在这里插入图片描述
上图的h函数和g函数组合成函数f=h•g,一个新函数,其定义域时R的n维到一维的映射。具体写出来就是这样的形式:f(x)=h(g(x))

下面证明一下函数组合如何保持凸性
1. 首先考虑一维情况:

k=n=1,
dom g=dom h=dom f =R
且h,g函数皆二阶可微。
那么我们需要验证如下式子:f为凸函数<=>f’’()≥0.
先计算一阶偏导和二阶偏导
在这里插入图片描述
上面的二阶偏导≥0成立,需要如下条件成立一条
在这里插入图片描述

2.高维情况。即n,k≥1时

假设h和g函数均不可二阶可微。如果函数只有部分有定义,那么为了方便分析,需要对函数进行拓展。比如logx这个函数,可以将其做如下拓展:
在这里插入图片描述
拓展后则有如下性质:
① h为凸函数,h~单调不降,g为凸函数,则f为凸函数
② h为凸函数,h~单调递增,g为凹函数,则f为凸函数
③ h为凹函数,h~单调递减,g为凹函数,则f为凹函数
④ h为凹函数,h~单调递增,g为凸函数,则f为凹函数

举个栗子

如果g是凸函数,那么exp(g(x))也是凸函数。
利用团函数的四条性质来证明一下。
定义一下h(z)=exp(z),这是个凸函数,且单调递增。如果g是凹函数,g>0,那么log{g(x)}就是凹函数。定义h(z)=log(z),扩展这个函数到全体实数域。这是凹函数,单调不降。所以他符合第三条性质

  • 3
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值