【凸优化笔记二】凸函数基本性质和例子

【凸优化笔记二】凸函数基本性质和例子

凸函数的四个定义

定义一

在这里插入图片描述

其中 dom f f f 是函数 f f f 的 定义域(前域),为凸集——这个很重要,后面的一些定义中也会用到,甚至对于凹函数也是。

在这里插入图片描述

从几何意义上来说,(3.1)意味着曲线上,从 x x x y y y 的弦,在函数 f f f 的图像上方。
x x x y y y 不相等,且 0 < θ < 1 0<\theta<1 0<θ<1 ,称该函数 f f f严格凸

tip

  1. f f f 为凸, − f -f f 为凹函数
  2. f f f 为严格凸, − f -f f 为严格凹函数
  3. 所有仿射函数为既凸又凹的;反之,某个函数为既凸又凹的,则为仿射函数

定义二

函数是凸函数,当且仅当其在与其定义域相交的任何直线上都是凸的。

换言之,函数 f f f 是凸的,当且仅当对于任意 x ∈ x\in xdom f f f 和任意向量 v v v
函数 g ( t ) = f ( x + t v ) g(t)=f(x+tv) g(t)=f(x+tv) 是凸的(其定义域为{ t ∣ x + t v ∈ t|x+tv\in tx+tvdom f f f})

该性质容许我们通过将函数限制在直线上判断其是否为凸函数;
也可以说这个定义将原高维空间降到了一维空间。

定义三

在这里插入图片描述

此处假设 f f f 可微,dom f f f 为凸集和任意 x , y ∈ x,y\in x,ydom f f f 满足(3.2)不等式,则说明函数 f f f 为凸函数。
该定义也可称为凸函数的一阶条件

用二维曲线,可以比较直观的说明相互关系。
在这里插入图片描述

定义四

在这里插入图片描述
假设 f f f 二阶可微,对于开集dom f f f内的任意一点,它的Hessian矩阵或二阶导数存在,则函数 f f f 为凸函数的充要条件是,Hessian矩阵是半正定阵。

当对于R上的函数,可以简化为条件 f ′ ′ ( x ) ≥ 0 f''(x)\ge0 f′′(x)0 (当然此时依然需要满足dom f f f是凸的,即一个区间)。
该定义也可称为凸函数的二阶条件。

类似的,函数 f f f 是凹函数的充要条件是,dom f f f 是凸集且对于任意 x ∈ x\in xdom f f f ∇ 2 f ( x ) ⪯ 0 \nabla^2f(x)\preceq0 2f(x)0

一些栗子

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
指数和的对数为凸函数的证明如下:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
几何平均的函数为凹函数的证明如下:(个人的方法)
在这里插入图片描述
在这里插入图片描述可将上图大的矩阵设为U
即证明U为正定矩阵即可,
即证明:任意矩阵V, V T U V ≥ 0 V^TUV\ge0 VTUV0
上式可化简如下
在这里插入图片描述
教材里的方法:
在这里插入图片描述

  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值