三角形的垂心

  1. 垂心的概念

    1. 三角形三条高所在直线的交点叫做三角形的垂心
  2. 垂心的性质

    1. 必然存在
      1. 证明
        1. 如图,由同侧角相等判定$A,B,E,D$四点共圆,则$\angle ABD=\angle AED$
        2. 同理,$\angle ACF=\angle AED$
        3. 由中间的斜八字型得$\angle AFC=\angle BDC=90^{\circ}$
    2. 基本性质
      1. 三角形的垂心与顶点的连线垂直于该顶点的对边
        1. 证明:由定义得
      2. 三角形的垂心与三个顶点构成一个垂心组,即这四点中以任意三点为三角形的顶点,则另一点为这个三角形的垂心
        1. 效果图
        2. 证明
          1. 原三角形的的三边成为了新三角形的边和高,原三角形的高成为了新三角形的边和延长线
          2. 由效果图显然易知
    3. 推论
      1. 推论1(设H为$△ABC$的垂心)
        1. 当$△ABC$为锐角三角形时,有
          1. $AB^2-AC^2=HB^2-HC^2,且\angle BHC=\angle ABC+\angle ACB=180°-\angle BAC$
            1. 证明
              1. 由勾股定理得$AB^2-AC^2=BD^2-CD^2,HB^2-CH^2=BD^2-CD^2$,边的关系得证
              2. $\angle BHC=\angle EHF=180°-\angle BAC$,且$\angle ABC+\angle ACB+\angle BAC=180°$,显然易证$\angle BHC=\angle ABC+\angle ACB=180°-\angle BAC$
          2. 对于其他两个角同理
        2. 当$△ABC$为钝角三角形时,有
          1. $AB^2-AC^2=HB^2-HC^2,且\angle CHA=\angle ABC$
            1. 证明:思想同上
          2. 对于其他两个角同理
      2. 推论2:相似关系
        1. 有3组相似关系,每组有4个,如图展式一组


          1. 由此显然易证$AH \cdot HD=BH \cdot HE=CH\cdot HF$(由比例式得,或由下面的四点共圆证)

      3.  推论3,6组四点共圆(3组对角互补,3组同侧角相等),此处展式2组

      4. 推论4

        1. 点H关于$△ABC$的对称点$H_1,H_2,H_3$均在$△ABC$的外接圆上

          1. 延长CE到G交外接圆于G,要求证HE=EG
          2. 由斜八字得$\angle ACG=\angle ABD$,又由等弦对等角得$\angle ACG=\angle ABG$,则$\angle ABD=\angle ABG$
          3. 由全等得HE=EG
      5. 推论5

        1.  $△ABC、△BCH、△ACH、ABH$的外接圆是等圆

          1. 证明:由推论4翻折出来即可

             

 

转载于:https://www.cnblogs.com/guoshaoyang/p/11218554.html

关于三角形的重心和垂心及其相关的几何性质如下所述: --- **重心** 三角形的重心是指三条中线交点的位置。每条中线都是连接一个顶点与其对面边中心的线段。 - 重心将每一中线分为两部分,其中靠近顶点的部分是远离顶点部分长度的两倍。 - 对于任意三角形,其重心总是位于内部。 - 如果以直角坐标系中的三点 $(x_1,y_1)$, $(x_2,y_2)$ 和 $(x_3,y_3)$ 构成一个三角形,则该三角形的重心 G 可由下面公式计算得出: $$G = \left(\frac{x_1 + x_2 + x_3}{3},\frac{y_1 + y_2 + y_3}{3}\right)$$ **垂心** 三角形垂心指的是三个高所在直线的交点。高的定义是从一个顶点垂直画到底边或者底边延长线上的一条线段。 - 锐角三角形垂心总是在三角形内部;钝角三角形垂心在外部;直角三角形垂心恰好就是直角所在的那个顶点。 - 若 H 是 ABC垂心,则有 AH⊥BC, BH⊥CA, CH⊥AB 成立。 **定理关联** 欧拉线是一个重要的定理,在任何非等边三角形中,外心 O、重心 G 和垂心 H 总共线,并且 HG=2GO。这条线被称为欧拉线。 此外,九点圆也是一个重要概念,它通过了六个脚点(即三边上的高足)、三个中点以及垂心到各顶点连线的中点,这个圆的圆心正好在线段 GH 上,距离 H 点的距离为 OH 距离的一半。 --- 为了更深入理解这些概念,可以参考以下相关问题:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值