keras输出预测值和真实值

在使用keras搭建神经网络时,有时需要查看一下预测值和真是值的具体数值,然后可以进行一些其他的操作。这几天查阅了很多资料。好像没办法直接access到训练时的数据。所以我们可以通过回调函数,传入新的数据,然后查看预测值和真是值。参考这篇解决:

https://stackoverflow.com/questions/47079111/create-keras-callback-to-save-model-predictions-and-targets-for-each-batch-durin

我的解决方法是这样的:

from keras.callbacks import Callback
import tensorflow as tf
import numpy as np
class my_callback(Callback):
    def __init__(self,dataGen,showTestDetail=True):
        self.dataGen=dataGen
        self.showTestDetail=showTestDetail
        self.predhis = []
        self.targets = []
    def mape(self,y,predict):
        diff = np.abs(np.array(y) - np.array(predict))
        return np.mean(diff / y)
    def on_epoch_end(self, epoch, logs=None):
        x_test,y_test=next(self.dataGen)
        prediction = self.model.predict(x_test)
        self.predhis.append(prediction)
        #print("Prediction shape: {}".format(prediction.shape))
        #print("Targets shape: {}".format(y_test.shape))
        if self.showTestDetail:
            for index,item in enumerate(prediction):
                print(item,"=====",y_test[index],"====",y_test[index]-item)
        testLoss=self.mape(y_test,prediction)
        print("test loss is :{}".format(testLoss))
View Code

画一下知识点,我们在继承的callback中实现 on_epoch_end方法:

x_test,y_test=next(self.dataGen)

这个数据生成方法是这样的

import numpy as np
def shuffleDatas(x,y):

    shuffleIndex=np.arange(len(x))
    np.random.shuffle(shuffleIndex)
    x=x[shuffleIndex]
    y=y[shuffleIndex]
    return x,y
def dataGen(x,y,batchsize=8,shuffle=True):
    assert len(x) == len(y)
    while True:
        if shuffle:
            x,y=shuffleDatas(x,y)
        index=0
        while index+batchsize<len(x):
            yield (x[index:index+batchsize],y[index:index+batchsize])
            index=index+batchsize
View Code

使用yield可以减少内存的使用,而且显得很高级。

转载于:https://www.cnblogs.com/superxuezhazha/p/10820199.html

在使用Keras搭建神经网络时,可以通过回调函数来比较预测值真实。通过回调函数,可以传入新的数据,并查看预测值真实。具体来说,可以使用回调函数中的`on_epoch_end`方法,在每个epoch结束时进行比较。在这个方法中,可以获取到模型在当前epoch上的预测值真实,然后进行比较和其他操作。这样可以方便地监控模型的性能和进展。\[1\] 另外,根据引用\[2\]中的描述,可以看到模型的架构和预测值真实的对应关系。在回归问题中,目标的历史数据加上其他相关特征X被用于预测目标。可以使用模型对输入序列进行预测,然后与真实进行比较,以评估模型的准确性。 在比较预测值真实时,常用的指标是均方误差(Mean Squared Error,MSE)。MSE是预测值真实之间差异的平方的平均。通过计算MSE,可以量化模型的预测误差大小,从而评估模型的性能。 总结起来,可以通过回调函数来比较预测值真实,并使用均方误差作为评估指标。这样可以监控模型的性能,并进行进一步的分析和调整。 #### 引用[.reference_title] - *1* [keras输出预测值真实方式](https://blog.csdn.net/weixin_42566108/article/details/113520654)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v4^insert_chatgpt"}} ] [.reference_item] - *2* *3* [在预测值和地面真实之间有系统偏差的LSTM](https://blog.csdn.net/weixin_39805119/article/details/110771655)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v4^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值