Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2
28 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
首先开一个数组枚举cd和,然后通过枚举ab和在新的数组里二分查找解
#include <cstdio> #include <cmath> #include <cctype> #include <iostream> #include <cstring> #include <algorithm> #include <string> #include <stack> #include <vector> #include <map> #include <set> using namespace std; typedef long long LL; string s; LL a[4005],b[4005],c[4005],d[4005]; LL cd[16000001] = {0}; LL n,res = 0; int main() { // freopen("test.in","r",stdin); ios::sync_with_stdio(false); cin >> n; for (int i=0;i<n;i++){ cin >> a[i] >> b[i] >> c[i] >> d[i]; } for (int i=0;i<n;i++){ for (int j=0;j<n;j++){ cd[i*n+j] = c[i] + d[j]; } } sort(cd,cd+n*n); for (int i=0;i<n;i++){ for (int j=0;j<n;j++){ LL now = a[i] + b[j]; LL need = 0 - now; res += upper_bound(cd,cd+n*n,need) - lower_bound(cd,cd+n*n,need); } } cout << res; return 0; }