波的相干叠加

波的独立性和叠加性

几列波相遇于同一区域,只要振动不是十分强烈,各波可以保持各自的频率、振幅和振动方向等特性,按照本身原来的传播方向继续前进,彼此不受影响,这就是波的独立性。在相遇区域,总的振动是分振动的线性叠加。

两列或两列以上的波,如果波频率相等,在观测时间内波动不中断,而且在相遇处振动方向几乎沿同一直线,那么叠加后的合振动可能在某些地方加强,某些地方减弱,这种现象称为干涉。振动强度的分布称为干涉图样,或干涉花样

干涉是波独有的行为,表明实物物体的运动与波动是完全不同的。两个运动的实物物体——比如两列火车——不可以毫不干扰地彼此穿越。

波的独立性和叠加性并不是总能成立的,当波的强度非常大时,独立性和叠加性可能会失效。

相干与不相干叠加

考虑频率相同,振动方向相同,具有恒定初始相位的两列波的叠加。设这两列波从空间两定点\(S_1\)\(S_2\)发出,波源的振动可分别表示为

\begin{equation*} \psi_{01}=A_1\cos\left (\omega t+\varphi_{01} \right) \end{equation*} \begin{equation*} \psi_{02}=A_2\cos\left (\omega t+\varphi_{02} \right) \end{equation*}

其中\(\varphi_{01}\)\(\varphi_{02}\)分别是两波源振动的初相位。两列波同时到达空间一点\(P\)处,\(P\)点到两波源的距离分别是\(r_1\)\(r_2\),波速分别为\(v_1\)\(v_2\),如下图所示,

6b6ebe29jw1f1p55jjtkrj20fb05qt8w.jpg

\(P\)点处的振动为

\begin{equation*} \psi_1=A_1\cos\left [\omega\left (t-\frac{r_1}{v_1}\right)+\varphi_{01} \right ]=A_1\cos\left (\omega t+\varphi_{1} \right) \end{equation*} \begin{equation*} \psi_2=A_2\cos\left [\omega\left (t-\frac{r_2}{v_2}\right)+\varphi_{02} \right ]=A_2\cos\left (\omega t+\varphi_{2} \right) \end{equation*}

其中\(\varphi_{1}=-\omega\frac{r_1}{v_1}+\varphi_{01}\)\(\varphi_{2}=-\omega\frac{r_2}{v_2}+\varphi_{02}\),为两个振动的相位。\(P\)点处的合振动是两振动的线性叠加:

\begin{equation*} \psi=\psi_1+\psi_2=A\cos(\omega t + \varphi) \end{equation*}

合振动的振幅和相位可由三角函数求得

\begin{equation*} A^2=A_1^2+A_2^2+2A_1A_2\cos(\varphi_2-\varphi_1)=A_1^2+A_2^2+2A_1A_2\cos\Delta \varphi \end{equation*} \begin{equation*} \tan \varphi=\frac{A_1\sin\varphi_1+A_2\sin\varphi_2}{A_1\cos\varphi_1+A_2\cos\varphi_2} \end{equation*}

以上结果也可以用几何法得到,并且更简便。如下图所示

6b6ebe29jw1f1p5v4wm9rj207905hwed.jpg

振动的强度正比于振幅的平方,于是\(P\)点处振动强度为

\begin{equation*} I=A^2=I_1+I_2+2\sqrt{I_1I_2}\cos\Delta \varphi \end{equation*}

其中

\begin{equation*} \Delta \varphi = \omega\left (\frac{r_2}{v_2}-\frac{r_1}{v_1}\right )-(\varphi_{02}-\varphi_{01}) \end{equation*}

以上结果也可由复数法得到。合振动用复数表示为

\begin{equation*} \psi=(A_1e^{i\varphi_1}+A_2e^{i\varphi_2})e^{i\omega t}=Ae^{i\omega t} \end{equation*}

\(P\)点处振动强度为

\begin{equation*} \begin{split} I&=|A|^2=(A_1e^{-i\varphi_1}+A_2e^{-i\varphi_2})(A_1e^{i\varphi_1}+A_2e^{i\varphi_2})\\ &=I_1+I_2+2\sqrt{I_1I_2}\cos\Delta \varphi \end{split} \end{equation*}

可以看出,在一般情况下,合振动的强度不等于分振动强度之和,还取决于传播到该点的两个分振动的相位差\(\Delta \varphi\)。不同的\(P\)点处,强度随相位差做周期性的变化,于是两列波在重叠区域形成稳定的强度的周期性分布,这就是波的干涉现象。

实际观察到的总是在较长时间内的平均强度。在某一时间间隔\(\tau\)内,合振动的平均相对强度为

\begin{equation*} \overline{I}=\overline{A^2}=\frac{1}{\tau}\int_0^{\tau}A^2\mathrm dt=I_1+I_2+2\sqrt{I_1I_2}\frac{1}{\tau}\int_0^{\tau}\cos(\varphi_2-\varphi_1)\mathrm dt \end{equation*}

如果在观测时间内,振动断断续续,两振动相位差不恒定,例如是无规随机变化,相位差可取任意值,几率均等地在观察时间多次历经从0到\(2\pi\)之间的一切可能值,则

\begin{equation*} \frac{1}{\tau}\int_0^{\tau}\cos(\varphi_2-\varphi_1)\mathrm dt =0 \end{equation*}

于是

\begin{equation*} \overline{I}=I_1+I_2 \end{equation*}

那么合振动平均强度等于分振动强度之和。表面上看来,在这种情况下,合振动强度是分振动之和,不表现出干涉现象。

如果两波的频率不同,则相位差连续变化,空间\(P\)点处强度连续变化,对时间取平均,同样得\(\overline{I}=I_1+I_2\)

如果振动方向互相垂直,合振动由矢量合成得到。设两分振动分别为

\begin{equation*} \vec{E}_1=\vec{A}_1\cos\left [\omega\left (t-\frac{r_1}{v_1}\right)+\varphi_{01} \right ]=\vec{A}_1\cos\left (\omega t+\varphi_{1} \right) \end{equation*} \begin{equation*} \vec{E}_2=\vec{A}_2\cos\left [\omega\left (t-\frac{r_2}{v_2}\right)+\varphi_{02} \right ]=\vec{A}_2\cos\left (\omega t+\varphi_{2} \right) \end{equation*}

合振动为

\begin{equation*} \vec{E}=\vec{E}_1+\vec{E}_2 \end{equation*}

用复数法可求得合振动强度

\begin{equation*} \begin{split} I&=|A|^2=(\vec{A}_1e^{-i\varphi_1}+\vec{A}_2e^{-i\varphi_2})\cdot(\vec{A}_1e^{i\varphi_1}+\vec{A}_2e^{i\varphi_2})\\ &=I_1+I_2+2\vec{A}_1\cdot\vec{A}_2\cos\Delta \varphi \\ &=I_1+I_2 \end{split} \end{equation*}

为非相干叠加。

综上,要得到相干叠加:频率相同,振动方向不垂直,观测期间两振动相位差恒定。

实现光的干涉的条件

两盏灯照射在墙上,墙的亮度是两盏灯单独照射时亮度的和,没有明暗条纹,说明两束光的叠加是非相干的,这是因为两个独立光源的初相位差是不恒定的。

光的辐射源于物质的原子或分子。在两个通常独立的光源中,甚至在同一发光体的不同部分,一般说来原子的辐射是互不相干的。在一批发出辐射的原子里,由于能量损失或由于周围原子的作用,辐射过程常常会中断。一次辐射过程延续时间很短,约\(10^{-8}s\)。随后另一批原子发光,但是已经具有新的初相位。因此不同原子发出的辐射之间的相位差,将在每一次新的辐射开始时发生改变,也就是说,没经过一个很短的时间间隔,相位差都会改变。光波不是无限长的连绵不断的波,而是有限长的断断续续的波列,各个波列都有不同的初始相位,完全随机的。所以两个独立的光源是不相干的。

要观察到光的干涉,可以采用某些方法将同一光源点发出的光波列分成两部分,在空间经过不同的路径再重叠起来,这样的两束光具有固定的相位差,可以满足相干条件,实现干涉。

参考资料

  • 光学·近代物理
  • 光学,姚启钧

转载于:https://www.cnblogs.com/joyfulphysics/p/5254478.html

### 超声相干技术原理 超声相干技术是一种基于超声信号相位一致性的方法,用于提升成像质量、分辨率和信噪比。其核心在于利用超声的干涉效应,通过对多个信号源或接收器之间的相对相位关系进行分析,提取目标区域的信息。 #### 基本原理 超声相干技术依赖于束成形的基本原理[^1]。具体来说,当一组超声发射器向目标区域发送信号时,这些信号会在空间中叠加形成干涉图案。通过调整各个发射器的时间延迟或相位差,可以控制合成的方向性和强度分布。这种方向性控制使得能量能够集中指向特定的目标区域,从而显著提高信号的质量和分辨能力。 #### 实现方法 在实际应用中,超声相干技术通常结合阵列探头实现。以下是其实现的关键步骤: 1. **信号发射与接收** 使用由多个压电晶体组成的超声阵列探头发射一系列脉冲信号,并记录回信号。每个通道的信号都携带有关目标物体的位置、形状和材质的信息。 2. **时间延迟校正** 对接收到的回信号施加适当的时间延迟补偿,使来自同一反射点的不同路径信号达到相长干涉状态。这一步骤对于聚焦和增强目标信号至关重要[^3]。 3. **数据处理** 利用数字信号处理器(DSP)或其他计算设备对采集的数据执行复杂的运算操作,例如傅里叶变换、滤以及图像重建算法等。最终生成清晰的二维或三维可视化结果。 #### 应用场景 - **医学影像诊断** 频域光学相干断层扫描(OCT)就是一种典型的例子,它采用类似的原理来获取生物组织内部结构的高度详细的横截面视图。 - **工业无损检测** 在材料科学领域,超声相干技术被广泛应用于缺陷探测、厚度测量等方面,因为它能有效区分细微差异并提供高精度的结果。 ```python import numpy as np def apply_time_delay(signal, delay): """ Apply time delay to a given signal. Parameters: signal (numpy.ndarray): Input signal array. delay (float): Time delay value in seconds. Returns: delayed_signal (numpy.ndarray): Signal after applying the specified delay. """ n_samples = int(delay * len(signal)) padded_signal = np.pad(signal, (n_samples, 0), 'constant') return padded_signal[:len(signal)] # Example usage of function original_signal = np.random.rand(100) delayed_signal = apply_time_delay(original_signal, 0.1) print("Delayed Signal:", delayed_signal) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值