极小多项式和友矩阵

本文详细介绍了矩阵的极小多项式及其性质,包括唯一性、与特征多项式的关系,并通过定理证明了相似矩阵具有相同的极小多项式。此外,文章还探讨了友矩阵的概念,展示了一个多项式如何成为其友矩阵的极小多项式和特征多项式,并指出无损矩阵与友矩阵之间的关系。
摘要由CSDN通过智能技术生成

将学习到什么

介绍了极小多项式和友矩阵的相关概念以及基础性质。
 


极小多项式

多项式 \(p(t)\) 称为使 \(A\in M_n\) 零化,如果 \(p(A)=0\). Cayley-Hamilton 定理保证了:对每个 \(A \in M_n\), 存在一个 \(n\) 次的首 1 多项式 \(p_A(t)\)(特征多项式),使得 \(p_A(A)=0\). 当然可能也存在一个更低次数的首 1 多项式使 \(A\) 零化. 我们要找出使 \(A\) 零化的最低次数的首 1 多项式. 下面这个定理表明这个要找的多项式是唯一的.
 
  定理 1: 设给定 \(A \in M_n\). 则存在唯一一个最小次数的首 1 多项式 \(q_A(t)\) 使 \(A\) 零化. \(q_A(t)\) 的次数至多为 \(n\). 如果 \(p(t)\) 是任何一个使 \(p(A)=0\) 成立的首 1 多项式,那么 \(q_A(t)\) 整除 \(p(t)\), 即对某个首 1 多项式 \(h(t)\)\(p(t)=h(t)q_A(t)\).
 
  证明:次数不大于 \(n\) 没什么好说的,因为存在 \(n\) 次的一定满足. 如果 \(p(t)\) 是任何一个使 \(A\) 零化的首 1 多项式,又如果 \(q(t)\) 是一个使 \(A\) 零化的 \(m\) 次(设为最低次)首 1 多项式,那么 \(p(t)\) 的次数是 \(m\) 或者更高. Euclid 算法确保存在一个首 1 多项式 \(h(t)\) 以及一个次数严格小于 \(m\) 的多项式 \(r(t)\) 使得 \(p(t)=q(t)h(t)+r(t)\). 但是 \(0=p(A)=q(A)h(A)+r(A)=0h(A)+r(A)\), 所以 \(r(A)=0\). 如果 \(r(t)\) 不是零多项式,我们就能将它规范化得到一个次数小于 \(m\) 的首 1 零化多项式,这是一个矛盾. 所以 \(r(t)\) 是零多项式,从而 \(q(t)\) 整除 \(p(t)\), 商为 \(h(t)\). 如果存在两个最小次数的使 \(A\) 零化的首 1 多项式,这个论证表明它们每一个都整除另外一个,由于它们次数相同,其中一个必定是另一个的纯量倍数. 但由于两者都是首 1 的,纯量因子必为 \(+1\), 从而它们是相等的.
 
  定义 1: 设给定 \(A\in M_n\). 使 \(A\) 零化的唯一的最小次数首 1 多项式 \(q_A(t)\) 称为

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值