第一节、信号的频域分析

信号一般可以划分为确定性信号和随机信号。

  • 确定性信号:能够用确定性图像曲线或数学解析式准确描述的信号;例如单位阶跃信号。
  • 随机信号:不能用明确的数学表达式描述的不遵循确定性的规律的信号;例如机床噪声信号、热噪声信号等实际测量的振动信号往往都是确定性信号和随机信号的组合。

严格意义上来说,在实际测量得到的信号都是随机信号,确定性信号一般只存在于理论研究中。

这一章我们主要介绍确定性信号的频域分析方法,我们把确定性信号分为以下四大类:

  • 连续周期信号
  • 连续非周期函数
  • 离散周期信号
  • 离散非周期信号

一、信号的正交分解

1、信号正交

信号正交的定义如下:若两个信号$x_1(t)$和$x_2(t)$在区间$(t_1,t_2)$上满足:

$$\int_{t_1}^{t_2} x_1(t)x_2^*(t)dt=0$$

则称信号$x_1(t)$和$x_2(t)$在区间$(t_1,t_2)$正交,其中$x_2^*(t)$表示$x_2(t)$的共轭信号。

2、正交信号集

设有一信号集$\{x_1(t),x_2(t),...,x_n(t)\}$,若该信号集中所有信号在区间$(t_1,t_2)$上都满足:

$$\int_{t_1}^{t_2} x_1(t)x_2^*(t)dt=\begin{cases} 0, {i≠j}  \\ K_i , {i=j} \end{cases}$$

则成该信号集为区间$(t_1,t_2)$上的正交信号集。

有了正交信号集的概念后,就可以给出完备正交信号集的概念。设一个在区间$(t_1,t_2)$上的正交信号集$\{x_1(t),x_2(t),...,x_n(t)\}$,如果在该正交信号集外,找不到任何一个信号与该正交信号集中的所有信号都正交,则把正交信号集$\{x_1(t),x_2(t),...,x_n(t)\}$称为完备正交信号集。一个完备的正交信号集通常包含无穷多个信号,$n→∞$.

3、信号的正交分解

任意信号$x(t)$在区间$(t_1,t_2)$上可以分解为该区间上的完备信号集$\{x_1(t),x_2(t),...,x_n(t),...\}$中各信号的线性组合,即

$$x(t)=C_1x_1(t)+C_2x_2(t)+...+C_nx_n(t)=\sum{i=1}^n C_ix_i(t)$$

求出系数$C_I$,即可达到信号分解的目的。

通过均方误差最小化们可以求出系数$C_i$:

$$C_i=\frac{\int_{t_1}^{t_2} x(t)x_i(t)dt}{\int_{t_1}^{t_2} x_i^2(t)}$$

 二、连续周期信号的傅里叶级数

1、傅里叶级数的三角形式

三角函数信号集$\{1,cos(Ω_0t),cos(2Ω_0t),...,cos(kΩ_0t),...,sin(Ω_0t),sin(2Ω_0t),...,sin(kΩ_0t),...)\}$是在区间$(t_0,t_0+T_0]$上的完备正交信号集,其中$Ω_0=2*\pi/T_0$.

区间$(t_0,t_0+T_0]$上的任意信号$x(t)$可用上哪交函数信号集表示为:

$$x(t)=\frac{a_0}{2}+a_1cos(Ω_0t)+a_2cos(2Ω_0t)+...+b_1sin(Ω_0t)+b_2sin(2Ω_0t)+...$$

$$=\frac{a_0}{2}+\sum_{k=1}^{∞}[a_kcos(kΩ_0t)+b_ksin(kΩ_0t)], t \in (t_0,t_0+T_0)$$

由于三角信号函数集中每个信号都以$T_0$为周期,所以$t \in (-∞,∞)$,上式变为:

$$\hat{x}(t)=\frac{a_0}{2}+\sum_{k=1}^{∞}[a_kcos(kΩ_0t)+b_ksin(kΩ_0t)], t \in (-∞,∞) $$

其中$\hat{x}(t)$是$x(t)$以$T_0$为周期进行周期延拓而得到的周期信号。上式说明了任意周期为$T_0$的周期函数$\hat{x}(t)$都可以分解为三角函数信号集$\{1,cos(Ω_0t),cos(2Ω_0t),...,cos(kΩ_0t),...,sin(Ω_0t),sin(2Ω_0t),...,sin(kΩ_0t),...)\}$中个新号的线性组合,称其为三角函数形式的傅里叶级数。

其中,系数:

$$a_k=\frac{2}{T_0}\int_{t_0}^{t_0+T_0}\hat{x}(t)cos(kΩ_0t)dt, k=0,1,...$$

$$b_k=\frac{2}{T_0}\int_{t_0}^{t_0+T_0}\hat{x}(t)sin(kΩ_0t)dt, k=0,1,...$$

$$a_0=\frac{2}{T_0}\int_{t_0}^{t_0+T_0}\hat{x}(t)dt$$

如果$\hat{x}(t)$是实偶函数,则$\hat{x}(t)cos(kΩ_0t)$是偶函数,$\hat{x}(t)sin(kΩ_0t)$是奇函数,此时,$b_k=0$,即$\hat{x}(t)$的展开式中没有正弦项。

如果$\hat{x}(t)$是实奇函数,则$\hat{x}(t)cos(kΩ_0t)$是奇函数,$\hat{x}(t)sin(kΩ_0t)$是偶函数,此时,$a_k&

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值