L1和L2正则化

一.L2正则化

J(\omega ,b)=\frac{1}{m}\sum_{i=0}^{m}L(\hat{y^{[i]}},y^{[i]})+\frac{\lambda }{2m}\left\|\omega\right\|^{2}_{2}

左半部分:经验风险                           右半部分:正则化项

右半部分计算如下:

\left \| \omega \right \|^{2}_{2}=\sum_{l=1}^{L}\left \| \omega^{[l]} \right \|^{2}_{F}

弗罗贝尼乌斯范数:

\left \| \omega^{[l]} \right \|_F^{2}=\sum_{i=1}^{n^{[l-1]}}\sum_{j=1}^{n^{l}}(\omega _i_j^{[l]})^{2}

梯度下降过程:

d\omega ^{[l]}=(from backprop)+\frac{\lambda }{m}\omega^{[l]}

\omega ^{[l]}=\omega ^{[l]}-\alpha d\omega ^{[l]}=\omega ^{[l]}-((from backprop)+\frac{\lambda }{m}\omega^{[l]})=(1-\frac{\alpha \lambda } {m})\omega ^{[l]}-\alpha (from backprop)

L2正则化也被称为权重衰减

二.L1正则化

J(\omega ,b)=\frac{1}{m}\sum_{i=0}^{m}L(\hat{y^{[i]}},y^{[i]})+\frac{\lambda }{2m}\left \| \omega \right \|_{1}

 其他同上

三.L1与L2的对比分析

L2正则化的效果是对原最优解的每个元素进行不同比例的放缩, L1正则化则会使原最优解的元素产生不同量的偏移,并使某些元素为0,从而产生稀疏性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值