一.L2正则化
![J(\omega ,b)=\frac{1}{m}\sum_{i=0}^{m}L(\hat{y^{[i]}},y^{[i]})+\frac{\lambda }{2m}\left\|\omega\right\|^{2}_{2}](https://i-blog.csdnimg.cn/blog_migrate/4569d9cca0cc666f315cc94819f9626c.png)
左半部分:经验风险 右半部分:正则化项
右半部分计算如下:
弗罗贝尼乌斯范数:
![\left \| \omega^{[l]} \right \|_F^{2}=\sum_{i=1}^{n^{[l-1]}}\sum_{j=1}^{n^{l}}(\omega _i_j^{[l]})^{2}](https://i-blog.csdnimg.cn/blog_migrate/8492669722ad03fb5a1563e2c9353194.png)
梯度下降过程:
L2正则化也被称为权重衰减
二.L1正则化
其他同上
三.L1与L2的对比分析
L2正则化的效果是对原最优解的每个元素进行不同比例的放缩, L1正则化则会使原最优解的元素产生不同量的偏移,并使某些元素为0,从而产生稀疏性。
![J(\omega ,b)=\frac{1}{m}\sum_{i=0}^{m}L(\hat{y^{[i]}},y^{[i]})+\frac{\lambda }{2m}\left\|\omega\right\|^{2}_{2}](https://i-blog.csdnimg.cn/blog_migrate/4569d9cca0cc666f315cc94819f9626c.png)
左半部分:经验风险 右半部分:正则化项
右半部分计算如下:
弗罗贝尼乌斯范数:
![\left \| \omega^{[l]} \right \|_F^{2}=\sum_{i=1}^{n^{[l-1]}}\sum_{j=1}^{n^{l}}(\omega _i_j^{[l]})^{2}](https://i-blog.csdnimg.cn/blog_migrate/8492669722ad03fb5a1563e2c9353194.png)
梯度下降过程:
L2正则化也被称为权重衰减
其他同上
L2正则化的效果是对原最优解的每个元素进行不同比例的放缩, L1正则化则会使原最优解的元素产生不同量的偏移,并使某些元素为0,从而产生稀疏性。
2800
3477

被折叠的 条评论
为什么被折叠?