题意:
给出一棵n个节点的树,每个节点有一个权值,Q和T玩游戏,Q先选一些不相邻的节点,T选剩下的节点,每个人的分数是所选节点的权值的异或和,权值大的胜出,问胜出的是谁。
题解:
话说,这题后面的边跟解的过程半毛钱关系没有,但是自己就是想不到,这博弈。。。
设sum为所有点权的异或和,A为先手得分,B为后手得分。
若sum=0,则A=B,故无论如何都是平局。
否则考虑sum二进制下最高的1所在那位,一定有奇数个点那一位为1。若先手拿走任意一个那一位为1的点,则B该位为0,故先手必胜。
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int main() { int t; scanf("%d",&t); while(t--){ int n,ans=0; scanf("%d",&n); for(int i=1;i<=n;i++){ int a; scanf("%d",&a); ans^=a; } for(int i=0;i<n-1;i++){ int u,v; scanf("%d%d",&u,&v); } if(ans==0) cout<<"D"<<endl; else cout<<"Q"<<endl; } }