对数学证明还有些疑问,这儿给出一个思维的框架
1.FFT的乘法量小于DFT的乘法量,但是与直观感觉不同的是:两者的量化误差是相等的。
跟踪某一个输出的全过程可见 当N点的FFT时某一个输出的乘法量是N-1个:
PS: SNR裕量
重统计是角度来看误差 数学可证FFT月DFT的结果相同
FFT没有减少每一点所需的乘法量,只是利用W的周期性减少啦DFT的乘法总体数量
定点计算时为防止溢出 一般会有一个1/N的缩放 我们可以吧尺度变换分配到FFT算法的每一阶段中 可令量化误差减小
对数学证明还有些疑问,这儿给出一个思维的框架
1.FFT的乘法量小于DFT的乘法量,但是与直观感觉不同的是:两者的量化误差是相等的。
跟踪某一个输出的全过程可见 当N点的FFT时某一个输出的乘法量是N-1个:
PS: SNR裕量
重统计是角度来看误差 数学可证FFT月DFT的结果相同
FFT没有减少每一点所需的乘法量,只是利用W的周期性减少啦DFT的乘法总体数量
定点计算时为防止溢出 一般会有一个1/N的缩放 我们可以吧尺度变换分配到FFT算法的每一阶段中 可令量化误差减小
转载于:https://www.cnblogs.com/sleepy/archive/2011/08/20/2147241.html