关于矩阵的秩的重要结论

今天要讲的是关于矩阵秩的重要结论。关于矩阵的秩,讲三点,前两点是比较重要的,专门提出来强调一下,第三点是书上没有的一个重要的结论:

1、,也就是一个矩阵与另一个矩阵相乘后,新矩阵的秩一定不大于原矩阵。怎么证明呢,结合线性结合线性方程组的有解性来进行证明的,AB=C,已经说明了AX=C是有解的,而线性方程组的有解性与矩阵的秩的关系说明了R(A)=R(A,C),所以A的秩大于等于C的秩,再将此矩阵两边转置,再根据线性方程组的解与矩阵的秩间关系同理可得A的秩大于等于C的秩.当我们学习了与线性表示有关的系统性理论后对这个定理会有更直观的理解。

2、矩阵左乘列满秩矩阵后新矩阵的秩与原矩阵的秩一样,此结论希望引起大家重视,此结论就是同济大学第五版70页的例9,大家可以参照此过程。

3、给出一个关于矩阵的秩的一般性的结论,

大家记住了的话对做题有很大的帮助,证明过程复杂,不要求掌握。

今天看一道考研的选择题:

上述是脱离了方程组单独讲的矩阵的秩的结论,而当秩与方程组结合时也有重要结论,对于方程组Ax=b

1、如果A是行满秩的矩阵,那么方程组要么有唯一解,要么有无穷多解。

如果A是行满秩的矩阵,因为矩阵的列秩等于矩阵的行秩,所以矩阵的列秩等于矩阵的行数,所以矩阵的列向量的线性组合一定能得到所有该维数的列向量。怎么理解呢?比如A是2x4的矩阵,A的秩为2,那么组成A的四个列向量的秩为2,这四个列向量都是2维的,那这四个列向量是不是能线性组合成任意的二维列向量,所以一定有解。

A的形式要么是矮且胖要么是方阵(矩阵的列不可能小于矩阵的行数),如果矩阵A矮且胖的话,那么对线性方程组的约束的个数(矩阵的行数)小于未知数的个数,那就是无穷多解。矩阵A是方阵,根据克拉默法则我们也能得出是唯一解。

上面是我们根据我们对线性代数的直观理解做出的推导,那么这个结论怎么证明呢?

2、如果A是列满秩的话,那么方程组要么有唯一解,要么无解。

       两个结论看起来类似,但直观理解的角度不太一样。A要么是方阵,要么是瘦高型,A是方阵时根据克拉默法则也可知有唯一解,A是瘦高型的话,A的线性组合如果能构成b就是唯一解,不能构成b就无解了。(因为A中各列线性无关,最后x不可能有无穷多解)

     还有一个角度,b是A中各列线性组合,b的这一列加到A后如果矩阵的秩加了1,说明无解,如果矩阵的秩不变,说明有唯一解。

转载于:https://www.cnblogs.com/rainbow70626/p/8886858.html

<think>好的,我现在需要回答用户关于矩阵乘积的性质及其数学推导的问题。首先,我得回忆一下矩阵的基本定义和相关性质。矩阵指的是矩阵的行(或列)向量组的最大线性无关组的大小,行和列是相等的。接下来,用户特别提到了矩阵乘积的,所以我需要重点回顾两个矩阵相乘后,新矩阵矩阵之间的关系。 我记得矩阵乘积的有一个重要的性质:如果A是一个m×n矩阵,B是一个n×p矩阵,那么乘积AB不超过A和B的中的较小值。也就是rank(AB) ≤ min{rank(A), rank(B)}。这个性质需要数学上的证明,可能需要用到列空间或者线性变换的观点来解释。 另外,可能还有其他相关的性质,比如当其中一个矩阵是可逆的时候,乘积的是否会发生变化。例如,如果A是可逆的,那么rank(AB)=rank(B),同样,如果B是可逆的,那么rank(AB)=rank(A)。这是因为可逆矩阵作为线性变换是满的,不会降低。这一点也需要详细推导。 接下来,我需要考虑如何组织这些内容,让用户能够逐步理解。首先介绍的基本定义,然后进入乘积的性质,分点说明,每个性质都给出数学证明或直观解释。可能需要用到列空间的概念,比如AB的列空间是A的列空间的一个子集,所以rank(AB) ≤ rank(A)。同时,AB的行空间也是B的行空间的子集,所以rank(AB) ≤ rank(B),因此两者的最小值就是上限。 然后,关于可逆矩阵的情况,可以利用可逆矩阵不改变的特性来证明。例如,如果A可逆,那么存在A^{-1},所以rank(AB) = rank(A^{-1}AB) = rank(B),这里用到了矩阵相乘不降低的性质,或者通过线性变换的复合来理解。 另外,可能需要提到一些特殊情况或者反例,比如当两个矩阵都不是可逆的时候,乘积的可能严格小于两者的。例如,取两个为1的矩阵相乘,结果可能是0或者1,具体取决于矩阵的结构。 在数学推导过程中,我需要确保符号和术语的正确性,比如正确使用线性映射、列空间、行空间、维度定理等概念。同时,引用用户提供的参考资料中的内容,例如引用[1]中提到的矩阵乘法、逆矩阵、分块矩阵等内容,或者引用[3]中的矩阵分解和关系,来支持我的解释。 最后,生成相关问题的时候,需要考虑用户可能的后续疑问,比如矩阵乘积的其他性质,实际应用中的例子,或者矩阵分解相关的扩展问题。例如,矩阵分解如何影响,或者SVD分解中的表现等。 现在需要检查是否有遗漏的重要性质,比如分块矩阵的乘积是否有特殊性质,或者是否有其他不等式,如Sylvester不等式等。不过可能用户的问题集中在基本性质,所以先覆盖主要结论,再考虑扩展。 总结一下,回答的结构应该是: 1. 矩阵的定义 2. 矩阵乘积的基本不等式及证明 3. 可逆矩阵对乘积的影响 4. 例子或应用 5. 相关引用 6. 生成的问题 同时,确保使用正确的中文表达和LaTeX格式,数学公式用$$...$$或$...$包裹,并正确引用用户提供的参考资料中的内容。</think>### 矩阵乘积的性质及数学推导 #### 1. 矩阵的基本定义 矩阵(rank)定义为**行**和**列**的统称,代表矩阵中**最大线性无关行(或列)向量的数量**。根据矩阵理论,行始终相等[^1]。 #### 2. 矩阵乘积的核心性质 设矩阵 $A \in \mathbb{R}^{m \times n}$,$B \in \mathbb{R}^{n \times p}$,则矩阵乘积 $AB$ 的满足: $$ \text{rank}(AB) \leq \min\{\text{rank}(A), \text{rank}(B)\} $$ **数学推导**: - **列空间视角**: 乘积矩阵 $AB$ 的列向量是 $A$ 的列向量的线性组合,因此 $AB$ 的列空间是 $A$ 的列空间的子集。根据子空间维度关系: $$ \text{rank}(AB) \leq \text{rank}(A) $$ - **行空间视角**: $AB$ 的行向量是 $B$ 的行向量的线性组合,因此 $AB$ 的行空间是 $B$ 的行空间的子集。类似地: $$ \text{rank}(AB) \leq \text{rank}(B) $$ 综合可得 $\text{rank}(AB) \leq \min\{\text{rank}(A), \text{rank}(B)\}$。 #### 3. 可逆矩阵对乘积的影响 若 $A$ 或 $B$ 可逆,乘积的约束可能放宽: - **若 $A$ 可逆**:$\text{rank}(AB) = \text
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值