与矩阵的秩有关的结论 A为m行n列矩阵,则有0 ≤ r(A) ≤ min{m,n}AT为A的转置,则有r(A) = r(AT) = r(AAT) = r(ATA)若A与B相似即A~B,则有r(A) = r(B)若P,Q可逆,则有r(PAQ) = r(A)max{r(A),r(B)} ≤ r(A,B) ≤ r(A) + r(B) 当B为非零列向量时,有r(A) ≤ r(A,B) ≤ r(A) + 1r(A + B) ≤ r(A) + r(B)r(AB) ≤ min{r(A),r(B)}A为m行n列矩阵,B为n行l列矩阵,若AB=0,则有·r(A)+r(B)≤n