矩阵乘积的秩定理
两个矩阵乘积的秩不大于其每个因子的秩;特别的当其中一个因子可逆时,那么乘积的秩等于另一个因子的秩。
证明
假设 A是一个m x n的矩阵,B是一个n x s的矩阵, r是A的秩。若
s
<
r
s\lt r
s<r,自然秩
A
B
≤
秩
A
AB \le 秩A
AB≤秩A.
所以主要讨论
s
≥
r
s\ge r
s≥r, 通过对A进行初等变换可以得到
E
1
E
2
.
.
.
E
p
A
E
p
+
1
.
.
.
E
q
=
A
‾
=
(
I
r
0
0
0
)
E_1E_2...E_pAE_{p+1}...E_q = \overline A = \left( \begin{array}{ccc} I_r\ \ 0\\ 0\ \ 0 \end{array} \right)
E1E2...EpAEp+1...Eq=A=(Ir 00 0)
E
1
E
2
.
.
.
E
p
A
B
=
E
1
E
2
.
.
.
E
p
A
E
p
+
1
.
.
.
E
q
E
q
−
1
.
.
.
E
p
+
1
−
1
E
p
−
1
B
=
A
‾
B
‾
E_1E_2...EpAB = E_1E_2...E_pAE_{p+1}...E_q E_q^{-1}...E_{p+1}^{-1}E_p^{-1}B = \overline A\ \overline B
E1E2...EpAB=E1E2...EpAEp+1...EqEq−1...Ep+1−1Ep−1B=A B
A
‾
B
‾
=
(
B
‾
r
0
0
0
)
\overline A\ \overline B = \left( \begin{array}{ccc} \overline B_r\ &0\\ 0\ &0 \end{array} \right)
A B=(Br 0 00)
所以秩
A
‾
B
‾
≤
r
\overline A\ \overline B \leq r
A B≤r,而秩
A
B
=
秩
(
E
1
E
2
.
.
.
E
p
A
B
)
=
秩
A
‾
B
‾
AB=秩(E_1E_2...EpAB)=秩\overline A\ \overline B
AB=秩(E1E2...EpAB)=秩A B,所以秩
A
B
≤
r
=
秩
A
AB\leq r = 秩A
AB≤r=秩A.
对B进行初等变换, 易知秩
A
B
≤
秩
B
AB\leq 秩B
AB≤秩B.
而当A可逆时,
B
=
A
−
1
A
B
=
A
−
1
(
A
B
)
B = A^{-1}AB = A^{-1}(AB)
B=A−1AB=A−1(AB),所以秩
B
≤
秩
A
B
B\leq 秩AB
B≤秩AB,而秩
A
B
≤
秩
B
AB\leq 秩B
AB≤秩B, 所以秩AB=秩B.