矩阵乘积的秩定理

该博客探讨了矩阵乘积的秩定理,证明了矩阵乘积的秩不超过其因子的秩,并在其中一个矩阵可逆的情况下,乘积的秩等于另一个矩阵的秩。通过初等变换展示矩阵乘积的秩性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵乘积的秩定理

两个矩阵乘积的秩不大于其每个因子的秩;特别的当其中一个因子可逆时,那么乘积的秩等于另一个因子的秩。

证明

假设 A是一个m x n的矩阵,B是一个n x s的矩阵, r是A的秩。若 s < r s\lt r s<r,自然秩 A B ≤ 秩 A AB \le 秩A ABA.
所以主要讨论 s ≥ r s\ge r sr, 通过对A进行初等变换可以得到
E 1 E 2 . . . E p A E p + 1 . . . E q = A ‾ = ( I r    0 0    0 ) E_1E_2...E_pAE_{p+1}...E_q = \overline A = \left( \begin{array}{ccc} I_r\ \ 0\\ 0\ \ 0 \end{array} \right) E1E2...EpAEp+1...Eq=A=(Ir  00  0)
E 1 E 2 . . . E p A B = E 1 E 2 . . . E p A E p + 1 . . . E q E q − 1 . . . E p + 1 − 1 E p − 1 B = A ‾   B ‾ E_1E_2...EpAB = E_1E_2...E_pAE_{p+1}...E_q E_q^{-1}...E_{p+1}^{-1}E_p^{-1}B = \overline A\ \overline B E1E2...EpAB=E1E2...EpAEp+1...EqEq1...Ep+11Ep1B=A B
A ‾   B ‾ = ( B ‾ r   0 0   0 ) \overline A\ \overline B = \left( \begin{array}{ccc} \overline B_r\ &0\\ 0\ &0 \end{array} \right) A B=(Br 0 00)
所以秩 A ‾   B ‾ ≤ r \overline A\ \overline B \leq r A Br,而秩 A B = 秩 ( E 1 E 2 . . . E p A B ) = 秩 A ‾   B ‾ AB=秩(E_1E_2...EpAB)=秩\overline A\ \overline B AB=(E1E2...EpAB)=A B,所以秩 A B ≤ r = 秩 A AB\leq r = 秩A ABr=A.
对B进行初等变换, 易知秩 A B ≤ 秩 B AB\leq 秩B ABB.
而当A可逆时, B = A − 1 A B = A − 1 ( A B ) B = A^{-1}AB = A^{-1}(AB) B=A1AB=A1(AB),所以秩 B ≤ 秩 A B B\leq 秩AB BAB,而秩 A B ≤ 秩 B AB\leq 秩B ABB, 所以秩AB=秩B.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值