分布式技术追踪 2017年第三十六期

分布式系统实践

1. 当LSM遇上SSD

https://mp.weixin.qq.com/s/HAaTVtg4SlaGLcn1QZpw9A

摘要: 以LevelDB为代表的LSM-tree存储引擎几乎一统天下, 然而代价是几十到上百倍的写放大. 随着SSD在随机IO上的突破, 这么高的写放大就显得不那么经济了, 这篇文章介绍了论文WiscKey: Separating Keys from Valuesin SSD-conscious Storage的思路, 阐述了一种对SSD友好的基于LSM的引擎设计方案.

2. 测试分布式系统的线性一致性

http://www.jianshu.com/p/bddfce1494d6

摘要: 验证分布式系统的正确性往往比实现它更复杂, 这篇文章介绍了验证分布式系统线性一致性的方法和工具, 非常值得学习.

微服务技术

1. 大系统化小之后,微信如何解决大规模微服务下的难题

https://mp.weixin.qq.com/s/UTLja4ytdCPG6QI6J9j1pg

摘要: “大系统小做”,微服务与腾讯的理念有一些相同的地方。本文整理自许家滔在2016年ArchSummit全球架构师峰会的演讲,分享了微信在微服务架构的实践中遇到的问题与解决方案。

2. 微服务API级权限的技术架构

https://mp.weixin.qq.com/s/EF5KQc5ZleDCYUx7jkEM-g

摘要: 权限控制是微服务架构中很重要的一个设计要素, 却经常被忽略. 这篇文章首先讲述了RBAC的基本概念, 然后介绍了自研的权限控制系统的设计思路.

高可用技术

1. 关于负载均衡和服务发现,Google的经验在这里

https://mp.weixin.qq.com/s/PYoOTs78qLBljbIYkZIxPA

摘要: Google数据中心约有200万台X86PC服务,没有买任何大、小型机,完全使用廉价的PC服务器搭建,因规模庞大,所以对网络要求非常高,交换机都是自行设计后定制的。服务发现、负载均衡的问题,对于Google的量级来说非常复杂,这篇文章跟大家分享下Google内部如何实现服务发现和负载均衡。

2. 深入解析Kafka高可用设计如何步步为营

https://mp.weixin.qq.com/s/rjYPVwe90weHpvnHUPnX7A

摘要: 本文从Data Replication和Leader Election两方面介绍了Kafka的HA机制, 帮助大家理解分布式系统的高可用性设计思路.

丰富多彩的计算机世界

1. 程序员学网络之集线器和交换机

https://mp.weixin.qq.com/s/mt1afr-eFJHxP2LeN4Yz2Q

摘要: 上大学的时候很多网络概念都没搞明白, 直到看了这篇文章, 才真正明白了集线器和交换机的原理, 了解了VLAN的含义, 推荐大家阅读.

2. protobuf 消息编解码算法

https://mp.weixin.qq.com/s/7tqpa_9XH_rI_6vaHbqwwA

摘要: protobuf可能很多同学并不陌生, 这篇文章解释了protobuf的编码原理, 帮助大家更好的运用和理解protobuf.

转载于:https://www.cnblogs.com/zhengran/p/7495897.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值