[转]前馈型神经网络与反馈型神经网络的区别

转载地址:http://blog.sina.com.cn/s/blog_7671b3eb01013mtc.html

前馈型神经网络取连续或离散变量,一般不考虑输出与输入在时间上的滞后效应,只表达输出与输入的映射关系;

反馈型神经网络可以用离散变量也可以用连续取值,考虑输出与输入之间在时间上的延迟,需要用动态方程来描述系统的模型。

前馈型神经网络的学习主要采用误差修正法(如BP算法),计算过程一般比较慢,收敛速度也比较慢;

而反馈型神经网络主要采用Hebb学习规则,一般情况下计算的收敛速度很快。

反馈网络也有类似于前馈网络的应用,并且在联想记忆和优化计算方面的应用更显特点。

转载于:https://www.cnblogs.com/Crysaty/p/6164376.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值