stats模型中的RLM仅限于M估计量。默认的Huber范数仅对y中的异常值具有鲁棒性,而在x中不具有鲁棒性,即对不良影响点不具有鲁棒性。在
像bisquare这样的重定准则能够去除不好的影响点,但解决方案是局部最优的,需要合适的起始值。那些具有较低崩溃点并且对诸如LTS这样的x异常值具有鲁棒性的方法目前在statsmodels中都不可用,在Python中也不存在。R有一套更广泛的稳健估计,可以处理这些情况。添加更多方法和模型的扩展statsmodels.健壮正在请求拉入,当前已暂停。在
总的来说,回答问题的第二部分:
在特定情况下,通常很难将观察结果声明或标识为异常值。研究人员通常使用稳健的方法来指出需要进一步调查的离群候选者。例如,一个原因可能是“离群值”是从不同的人群中取样的。在许多情况下,使用纯机械的统计识别可能并不合适。在
在这个例子中:如果我们拟合了一个陡坡,并将a点作为一个离群值,那么点B和C可能非常适合,并且不会被识别为异常值。另一方面,如果A是基于额外信息的合理点,那么这种关系可能是非线性的。
我的猜测是,它将声明A为唯一的异常值,并拟合一条陡峭的回归线。在