CNN对位移、尺度和旋转不变性的讨论

本文探讨了卷积神经网络(CNN)的三大特性:平移不变性、尺度不变性和旋转不变性。CNN通过全局共享权值和池化操作实现平移不变性;对于尺度变化,其具有一定的不变性但检测小目标仍是一大挑战;而旋转不变性则基本不具备,实验证明增加旋转样本可以提升模型的鲁棒性。
摘要由CSDN通过智能技术生成

CNN得益于全局共享权值和pool操作,具有平移不变性。

对于尺度不变性,是没有或者说具有一定的不变性(尺度变化不大),实验中小目标的检测是难点,需要采用FPN或者其他的方式单独处理。

对于旋转不变性,是基本没有的,实验证明添加旋转样本是一种可靠的样本增强策略,能增强模型对旋转的鲁棒性。

 

转载于:https://www.cnblogs.com/dingz/p/9259298.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值