R语言:R2OpenBUGS

本文介绍了R语言中的R2OpenBUGS包,用于调用BUGS模型进行数据分析。主要内容包括如何将结果转换为BUGS对象、添加数据到搜索路径、运行BUGS、生成输入文件、读取日志、绘制图表等,并提供了各函数的详细用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用这个包调用BUGS model,分别用表格和图形概述inference和convergence,保存估计的结果

as.bugs.array 转换成bugs object

函数把马尔科夫链估计结果(不是来自于BUGS),转成BUGS object,主要用来plot.bugs 展示结果。

as.bugs.array(sims.array, model.file=NULL, program=NULL, DIC=FALSE, DICOutput=NULL, n.iter=NULL, n.burnin=0, n.thin=1)

sims.array :3维数组 n.keep, n.chains和combined parameter vector的长度

model.file : OpenBUGS编写的.odc 模型文件

DIC : 是否计算DIC曲线

DICOutput : DIC值

n.iter :生成sims.array 每条chain 迭代数

n.burnin :丢弃的迭代次数

n.thin :thinning rate

attach.all 添加数据到搜索路径

The database is attached/detached to the search path,While attach.all attaches all elements of an object x to a database called name, attach.bugs attaches all elements of x$sims.list to the database bugs.sims itself making use of attach.all.

attach.all(x, overwrite = NA, name = “attach.all”) attach.bugs(x, overwrite = NA) detach.all(name = “attach.all”) detach.bugs()

x : bugs 对象

overwrite :TRUE 删除全局环境中被掩盖的数据, NA 询问,FALSE

name : 环境name

bugs 最重要,用R运行bugs

自动输入值,启动bugs,保存结果

bugs(data, inits, parameters.to.save, n.iter, model.file=“model.txt”, n.chains=3, n.burnin=floor(n.iter / 2), n.thin=1, saveExec=FALSE,restart=FALSE, debug=FALSE, DIC=TRUE, digits=5, codaPkg=FALSE, OpenBUGS.pgm=NULL, working.directory=NULL, clearWD=FALSE, useWINE=FALSE, WINE=NULL, newWINE=TRUE, WINEPATH=NULL, bugs.seed=1, summary.only=FALSE, save.history=(.Platform$OS.type == “windows” | useWINE==TRUE), over.relax = FALSE)

data :模型中使用的数据

inits :n chain 的元素列表,每一个要素是一个模型初始值列表,或者一个生成初始值得function

parameters.to.save : 需要被记录的参数名向量

model.file : model 文件.txt

n.chains : 默认3条

n.iter :每条链的迭代次数,默认2000

n.thin : Thinning rate. 正整数,默认是1,

saveExec :使用basename(模型.file)保存OpenBUGS执行的重新启动映像。

restart :执行从上次执行的最后状态恢复,存储在工作目录中的.bug文件中。

debug : 默认FALSE,正在运行行时Openbugs 页面关闭

DIC :计算deviance,,pD,和DIC。

digits :有效小数位数

codaPkg :FALSE 返回 bugs对象,否则输出,用coda 包 read.bugs 读取,

OpenBUGS.pgm :通向OpenBUGS可执行程序的完整路径。

working.directory:OpenBUGS的输入和输出将存储在此目录中;

clearWD :是否这些文件的“data.tx

### 如何在R语言中使用OpenBUGS进行贝叶斯统计分析 为了实现这一目标,`rbugs`包提供了Linux环境下连接到OpenBUGS的支持[^1]。下面介绍具体方法: #### 安装必要的软件和库 首先需要安装OpenBUGS本身以及相应的R包。 对于Ubuntu/Debian系统可以按照如下命令来完成这些操作: ```bash sudo apt-get install openbugs install.packages("rbugs") ``` #### 加载并配置环境 加载所需的R包,并设置工作目录以便于后续的数据读取与保存。 ```r library(rbugs) setwd("/path/to/work/directory") # 设置当前的工作路径 ``` #### 准备数据文件 创建一个文本文件用于存储模型定义(model.txt),另一个用来放置观测数据(datafile.R),最后还需要准备初始值脚本(initscript.R)。 - **Model File (model.txt)**: ```text model { for(i in 1:N){ y[i] ~ dnorm(mu, tau) } mu ~ dunif(-1000, 1000) sigma <- pow(tau,-0.5) tau ~ dgamma(0.001, 0.001) } ``` - **Data File (datafile.R)**: ```r list(N=100, y=c(...)) # 这里填入实际观察到的数据向量 ``` - **Initial Values Script (initscript.R)**: ```r list(mu=rnorm(1),tau=rgamma(1,.001,.001)) ``` #### 执行MCMC采样过程 通过调用`rbugs()`函数启动计算流程,在此过程中指定上述三个文件的位置以及其他参数选项。 ```r result <- rbugs( model.file="model.txt", data.files=list("datafile.R"), parameters.to.save=c("mu","sigma"), n.chains=3, n.iter=1e4, working.directory=getwd(), bugs.directory="/usr/local/bin/OpenBUGS/", clearWD=TRUE ) print(result) ``` 以上就是在R环境中利用OpenBUGS执行简单线性回归案例的过程概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值