人工智能实战_第六次作业_廖盈嘉

第6次作业:调参

项目
内容
这个作业属于哪个课程
这个作业的要求在哪里
我在这个课程的目标是
学会、理解和应用神经网络知识来完成一个app
这个作业在哪个具体方面帮助我实现目标
了解神经网络隐层的工作原理,学会搜索最优学习率并进行调参
作业正文
参考文献

一、作业内容


a. 将模型准确度调整至>97%

b. 整理形成博客,博客中给出参数列表和对应值

c. 给出最终的loss下降曲线

d. 给出最终准确度结果

二、作业正文


a. 将模型准确度调整至>97%

1) 搜索最优学习率
由于我们不能够盲目的调节神经网络的参数,所以首先进行了最优学习率的搜索。
部分代码:

if iteration % 100 == 0:
                if (learning_rate >=0.0001) and (learning_rate<0.001):
                    learning_rate = learning_rate + 0.0001
                elif (learning_rate >=0.001) and (learning_rate<0.010):
                    learning_rate = learning_rate + 0.001
                elif (learning_rate >=0.01) and (learning_rate<0.1):
                    learning_rate = learning_rate + 0.01
                elif (learning_rate >=0.1) and (learning_rate<1):
                    learning_rate = learning_rate + 0.1
                elif (learning_rate >=1) and (learning_rate<1.1):
                    learning_rate = learning_rate + 0.01

输出图:

1613883-20190422111205542-308829139.png

1613883-20190422111236221-1591123640.png

   从上图,可以看出对此模型的最优学习率为 \(10^{-0.5}\)= 0.316227。【图中的横坐标为对数坐标轴】

2) 学习率衰减 Learning Rate Decay
随着迭代次数增加,学习率会逐渐进行减小,保证模型在训练后期不会有太大的波动,从而更加接近最优解。

learning_rate = learning_rate * np.exp(-0.01*epoch)

b. 整理形成博客,博客中给出参数列表和对应值

适当的增加神经网络的神经元个数将会影响迭代的速度和准确度,所以选择
n_hidden1 = [128, 64, 32]; n_hidden2 = [64, 32, 16];
max_epoch = 40;
learning_rate = 0.316227;
batch_size = [10, 20, 30]。
一共会组成18个组合。

参数列表和对应值
numberLearning ratemini batchmax-epochn_hidden1n_hidden2Accuracy
10.3162271040128640.983(max)
20.3162272040128640.9821
30.3162273040128640.9797
40.3162271040128320.9822
50.3162272040128320.9811
60.3162273040128320.9798
70.3162271040128160.981
80.3162272040128160.9792
90.3162273040128160.981
100.316227104064320.9782
110.316227204064320.9771
120.316227304064320.9781
130.316227104064160.978
140.316227204064160.9783
150.316227304064160.9771
160.316227104032160.9685(不符合)
170.316227204032160.9709
180.316227304032160.969(不符合)

c. 给出最终的loss下降曲线

learning rate = 0.316227, max_epoch = 40, batch_size = 10, n_hidden1 = 128, n_hidden2 = 64, accuracy = 0.983
1613883-20190422140136091-1757918471.png

d. 给出最终准确度结果

当learning rate = 0.316227, max_epoch = 40, batch_size = 10, n_hidden1 = 128, n_hidden2 = 64 时,给出的准确率高达0.983,是所有训练得出的数据中最高的。
在这个模型当中,当隐层的神经元个数增加时,准确率会提高,说明并没有过拟合。当神经网络隐层神经元个数较大与mini batch size较小时,准确率会提高。相反地,当神经网络隐层的神经元个数较小与mini batch size较大时,准确率会下降。

转载于:https://www.cnblogs.com/MichelleLiew/p/10746084.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值