【数据挖掘】时序模式-白噪音-时序图-ADF检验-一阶差分-acf && pacf(2021-11-11

这篇博客介绍了时序模式分析,包括纯随机序列的生成、白噪音检测、时序图、ADF检验、一阶差分、自相关图和偏自相关图的查看。通过Python生成数据并进行分析,讨论了随机序列在不同数据量下是否保持平稳,以及如何判断序列的平稳性,并探讨了平稳序列和1、2阶平稳序列的特性。
摘要由CSDN通过智能技术生成

时序模式

2、 根据课堂上所讲的概念,编写程序产生以下时间序列数据(时间可以简化用1,2,3. . . . .表示),每种类型数据至少20条数据。并根据自己想法,使用程序画出相应的图。

一、 纯随机序列

1、生成随机数据

通过random生成list后将list转化为DataFrame形式

image-20211111184649417
2、白噪音检测查看是否为随机序列
image-20211111194201897 image-20211111194141404 image-20211111194832708

这里可以看到p值为0.47690937,可以认为是一个随机序列

原假设:是随机的,即改序列为白噪声序列。

  • p值大,接受原假设;
  • p值小,拒绝原假设。

分割线:0.05。 0.05置信区间以下,可以认为出现显著的自回归关系ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值