【数据挖掘】时序模式-白噪音-时序图-ADF检验-一阶差分-acf && pacf(2021-11-11

这篇博客介绍了时序模式分析,包括纯随机序列的生成、白噪音检测、时序图、ADF检验、一阶差分、自相关图和偏自相关图的查看。通过Python生成数据并进行分析,讨论了随机序列在不同数据量下是否保持平稳,以及如何判断序列的平稳性,并探讨了平稳序列和1、2阶平稳序列的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时序模式

2、 根据课堂上所讲的概念,编写程序产生以下时间序列数据(时间可以简化用1,2,3. . . . .表示),每种类型数据至少20条数据。并根据自己想法,使用程序画出相应的图。

一、 纯随机序列

1、生成随机数据

通过random生成list后将list转化为DataFrame形式

image-20211111184649417
2、白噪音检测查看是否为随机序列
image-20211111194201897 image-20211111194141404 image-20211111194832708

这里可以看到p值为0.47690937,可以认为是一个随机序列

原假设:是随机的,即改序列为白噪声序列。

  • p值大,接受原假设;
  • p值小,拒绝原假设。

分割线:0.05。 0.05置信区间以下,可以认为出现显著的自回归关系ÿ

### ARIMA-BP联合预测模型的实现与应用 #### 1. ARIMA-BP联合预测模型简介 ARIMA-BP联合预测模型结合了自回归积分滑动平均模型(ARIMA)和反向传播神经网络(BP Neural Network)。这种组合旨在发挥两种方法的优势:ARIMA擅长捕捉线性关系并处理非平稳时间序列,而BP神经网络则能更好地拟合复杂的非线性模式。通过先使用ARIMA对原始数据进行预处理,去除趋势性和季节成分,再利用BP神经网络进一步学习残差中的潜在规律,可以提高整体预测性能。 #### 2. 数据准备阶段 对于给定的时间序列数据集,在构建ARIMA-BP混合模型之前,通常需要完成如下几个步骤: - **数据清洗**:删除异常值、填补缺失值等操作。 - **探索性数据分析**:绘制时序图观察是否存在明显趋势或周期特性;计算ACF/PACF函数辅助判断可能存在的滞后效应。 - **检验平稳性**:采用ADF单位根测试验证原序列是否满足弱平稳条件[^3]。 ```matlab % ADF Test for Stationarity Check [h,pValue,stat,critValue,reg]=adftest(data,'model','ARD'); disp(['Is the series stationary? ', num2str(h)]); ``` #### 3. 构建ARIMA部分 一旦确认输入信号具备一定的稳定性,则可以根据样本统计特征选择合适的p,d,q参数来定义ARIMA(p,d,q),并通过极大似然估计法求解最优系数矩阵θ̂ 。值得注意的是,当面对具有较强记忆特性的长期依赖结构时,还可以考虑引入分数阶差分项f以增强描述能力。 ```matlab % Fit an ARIMA Model to Data Mdl = arima('Constant',0,'D',1,'Seasonality',12,... 'MALags',[1 12],'SMALags',[],'Variance',NaN); EstMdl = estimate(Mdl,data); residuals = infer(EstMdl,data); % Extract Residual Series ``` #### 4. 训练BP神经网络模块 接下来基于上述得到的残差序列作为新的训练目标y* ,设计一个多层感知机架构用于逼近剩余误差分布情况。具体来说,就是选取适当数量隐藏节点数h以及激活函数形式σ() 来搭建前馈型全连接层,并借助梯度下降算法迭代更新权重w直至收敛至全局极小点附近位置停止优化过程。 ```python from sklearn.neural_network import MLPRegressor nn_model = MLPRegressor(hidden_layer_sizes=(5,), activation='relu', solver='adam', max_iter=2000) nn_model.fit(X_train, y_residuals) # X_train should be lagged residuals or other features ``` #### 5. 综合输出最终结果 最后一步便是将两个子系统的贡献相加起来形成总的预期值ŷ :一方面来自ARIMA部分所产生的基础估计值μ̂ ;另一方面则是由经过调校后的ANN所给出调整增量Δ̂ 。如此这般便完成了整个流程的设计思路介绍。 ```matlab forecast_arima = forecast(EstMdl,numPeriods); final_forecast = forecast_arima + nn_model.predict(lagged_features); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值