CS100.1x-lab1_word_count_student

这是CS100.1x第一个提交的有意义的作业,自己一遍做下来对PySpark的基本应用应该是可以掌握的。相关ipynb文件见我github

这次作业的目的如题目一样——word count,作业分成4个部分,遇到不懂的地方,时刻记得查API。

Part 1 Creating a base RDD and pair RDDs

Create a base RDD

wordsList = ['cat', 'elephant', 'rat', 'rat', 'cat']
wordsRDD = sc.parallelize(wordsList, 4)
# Print out the type of wordsRDD
print type(wordsRDD)

我们通过sc.parallelize方法来把python的list创建为RDD,打印的结果是

<class 'pyspark.rdd.RDD'>

我们可以看到,wordsRDD已经变成了pyspark.rdd.RDD类

Pluralize and test

下面几个将介绍map()的用法。注释里面带有TODO的就表示这里是作业,具体的功能实现在函数的注释里有。测试用例我就不在这里写了,大家可以去我的github上下载源文件。我这里重点讲功能实现。

# TODO: Replace <FILL IN> with appropriate code
def makePlural(word):
    """Adds an 's' to `word`.

    Note:
        This is a simple function that only adds an 's'.  No attempt is made to follow proper
        pluralization rules.

    Args:
        word (str): A string.

    Returns:
        str: A string with 's' added to it.
    """
    return word + 's'

print makePlural('cat')

# One way of completing the function
def makePlural(word):
    return word + 's'

print makePlural('cat')

这里的函数实现就仅仅把单数变复数,所以在字符串上加's'就行。

Apply makePlural to the base RDD

# TODO: Replace <FILL IN> with appropriate code
pluralRDD = wordsRDD.map(makePlural)
print pluralRDD.collect()

我可以看到map()里放入的是一个函数,作用是对RDD里的每个元素实现该函数的操作。

Pass a lambda function to map

# TODO: Replace <FILL IN> with appropriate code
pluralLambdaRDD = wordsRDD.map(lambda x: x + 's')
print pluralLambdaRDD.collect()

这里的知识点是map和lamda的结合,在后面我们会越来越多的和lamda打交道,因为很多函数我们仅仅只用一次,所以lambda来定义匿名函数是再适合不过了。

这里lamda后面的x可以是任何值,是占位符的作用,表示RDD里的任何一个元素,冒号后面的表示你要对该元素的操作。就这么简单。

Length of each word

# TODO: Replace <FILL IN> with appropriate code
pluralLengths = (pluralRDD
                 .map(lambda x:len(x))
                 .collect())
print pluralLengths

这里要返回每个元素的长度,所以直接返回len(x)就行。

Pair RDDs

这里要介绍的是pair RDD,也就是key-value的RDD。python中,用tuple来实现。题目要求是把原来的RDD里的值变成(word, 1)的样子,用lambda很好解决。

# TODO: Replace <FILL IN> with appropriate code
wordPairs = wordsRDD.map(lambda x: (x,1))
print wordPairs.collect()

Part 2 Counting with pair RDDs

groupByKey() approach

我们先用groupByKey()来进行count word的操作。这个函数会把RDD里面相同的key放到一个list里面,然后存在一个数据块上。但是这样存在两个问题:

  1. 这种操作涉及到大量不同机器不同数据块的数据移动
  2. 生成的list会很大,可能对某一个worker来说,负担太重
# TODO: Replace <FILL IN> with appropriate code
# Note that groupByKey requires no parameters
wordsGrouped = wordPairs.groupByKey()
for key, value in wordsGrouped.collect():
    print '{0}: {1}'.format(key, list(value))

我们看到,用法其实很简单,直接使用就行。但是最后的结果是这样,并没有把结果相加

[('cat', [1, 1]), ('elephant', [1]), ('rat', [1, 1])]

Use groupByKey() to obtain the counts

我们看到上面的结果是一个key对应了一个list,而并非是真正的结果,所以这里还需要进一步操作,计算list的长度,或者求和都可以。

# TODO: Replace <FILL IN> with appropriate code
wordCountsGrouped = wordsGrouped.mapValues(lambda x : sum(list(x)))
print wordCountsGrouped.collect()

这里我用了一个新的方法mapValues(),这个方法是直接传入value进行计算,不改变key的值。

Counting using reduceByKey

reduceByKey()相比于groupByKey()就有效得多。因为它是在本地计算好了后,进行reduce操作,类似与MapReduce里的combiner。其实这里还可以这么写

wordCounts = wordPairs.reduceByKey(add)

但是这么不让from operator import add,所以写成lambda表达式。

All together

把前面所有的知识点写成一句。。。

# TODO: Replace <FILL IN> with appropriate code
wordCountsCollected = (wordsRDD
                       .map(lambda x: (x,1))
                       .reduceByKey(lambda a,b: a+b)
                       .collect())
print wordCountsCollected

Part 3 Finding unique words and a mean value

Unique words

这里是计算RDD里不同单词的数目。我们在前面已经reduce过了,实际上把相同的合并了,这里只需要计算法RDD里的元素个数就行

# TODO: Replace <FILL IN> with appropriate code
uniqueWords = wordCounts.count()
print uniqueWords

Mean using reduce

这里是要把所有的value加起来,然后除以元素的个数,也就是平均每个元素有多少次。用到了一个新的函数values(),这个方法直接返回所有value的list。

# TODO: Replace <FILL IN> with appropriate code
from operator import add
totalCount = (wordCounts
              .values()
              .reduce(add))
average = totalCount / float(wordCounts.count())
print totalCount
print round(average, 2)

Part 4 Apply word count to a file

这里是综合了前面所有的知识,来对一个文本文件进行处理,还涉及到文本文件处理的一些方法。

wordCount function

# TODO: Replace <FILL IN> with appropriate code
def wordCount(wordListRDD):
    """Creates a pair RDD with word counts from an RDD of words.

    Args:
        wordListRDD (RDD of str): An RDD consisting of words.

    Returns:
        RDD of (str, int): An RDD consisting of (word, count) tuples.
    """
    return wordListRDD.map(lambda x: [x,1]).reduceByKey(lambda a,b: a+b)
print wordCount(wordsRDD).collect()

Capitalization and punctuation

真实的文本文件远比我们之前碰到的例子复杂。我们需要考虑三个问题:

  1. 单词里的大小写,例如Spark和spark应该是同一个单词
  2. 标点符号要去掉
  3. 单词前后的空格也要去掉
# TODO: Replace <FILL IN> with appropriate code
import re
def removePunctuation(text):
    """Removes punctuation, changes to lower case, and strips leading and trailing spaces.

    Note:
        Only spaces, letters, and numbers should be retained.  Other characters should should be
        eliminated (e.g. it's becomes its).  Leading and trailing spaces should be removed after
        punctuation is removed.

    Args:
        text (str): A string.

    Returns:
        str: The cleaned up string.
    """
    return re.sub(r'[^\w\s]','',text).strip().lower()
print removePunctuation('Hi, you!')
print removePunctuation(' No under_score!')

这里re.sub()里面的正则表达式有点复杂。大概意思是把所有的标点都换成'',这里的r表示原生字符串,也就是不进行转义,^表示否,\w和\s分别表示单词和空格。所以结果是只保留单词和空格。

Load a text file

这里用到了Complete Works of William Shakespeare,来自Project Gutenberg,作为文本。
具体文件从哪里来,我们不用管,运行就行。

# Just run this code
import os.path
baseDir = os.path.join('data')
inputPath = os.path.join('cs100', 'lab1', 'shakespeare.txt')
fileName = os.path.join(baseDir, inputPath)

shakespeareRDD = (sc
                  .textFile(fileName, 8)
                  .map(removePunctuation))
print '\n'.join(shakespeareRDD
                .zipWithIndex()  # to (line, lineNum)
                .map(lambda (l, num): '{0}: {1}'.format(num, l))  # to 'lineNum: line'
                .take(15))

Words from lines

我们这里要把行转为单词。上面的RDD中,每个元素都是一行。假如我们直接用split方法,最后是生成一个list,我们还需要把list解开,所以这里用flatMap()

# TODO: Replace <FILL IN> with appropriate code
shakespeareWordsRDD = shakespeareRDD.flatMap(lambda x : x.split(' '))
shakespeareWordCount = shakespeareWordsRDD.count()
print shakespeareWordsRDD.top(5)
print shakespeareWordCount

Remove empty elements

在上面操作的基础上,去掉空的单词。

# TODO: Replace <FILL IN> with appropriate code
shakeWordsRDD = shakespeareWordsRDD.filter(lambda x: x !='')
shakeWordCount = shakeWordsRDD.count()
print shakeWordCount

Count the words

这个就和之前的工作一样了。不多说了。

# TODO: Replace <FILL IN> with appropriate code
top15WordsAndCounts = wordCount(shakeWordsRDD).takeOrdered(15,key=lambda(w,c):-c)
print '\n'.join(map(lambda (w, c): '{0}: {1}'.format(w, c), top15WordsAndCounts))

转载于:https://www.cnblogs.com/-Sai-/p/6662312.html

回答: 根据提供的引用内容,问题是关于打开项目文件失败的。根据引用\[1\]中的错误信息,项目编译时出现了内部错误,并建议联系供应商。这可能是由于编译器或其他工具的问题导致的。另外,引用\[2\]和\[3\]提供了一些关于路径和文件替换的信息,但与打开项目文件失败的问题似乎没有直接关联。为了解决打开项目文件失败的问题,建议检查项目文件的路径是否正确,并确保所需的文件和库文件都已正确复制和替换。如果问题仍然存在,建议联系相关供应商或开发者获取进一步的支持和解决方案。 #### 引用[.reference_title] - *1* [关于keil ARM编译器bug --- Internal fault: 0xb3b91b](https://blog.csdn.net/sgmcy/article/details/121614357)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [关于STM32Cubemx生产的软件添加DSP源码工程](https://blog.csdn.net/jgyr6789/article/details/124798715)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值