题目
问题3. (i) 求解
Δu=0x2+y2+z2<1,u=g(x,y,z)x2+y2+z2=1\Delta u = 0 \quad x^2 + y^2 + z^2 < 1, \\ u = g(x, y, z) \quad x^2 + y^2 + z^2 = 1Δu=0x2+y2+z2<1,u=g(x,y,z)x2+y2+z2=1
其中 g(x,y,z) g(x, y, z) g(x,y,z) 在下面定义。
提示:如果 g g g 是一个 m m m 次多项式,试令
u=g−P(x,y,z)(x2+y2+z2−R2)u = g - P(x, y, z)(x^2 + y^2 + z^2 - R^2)u=g−P(x,y,z)(x2+y2+z2−R2)
其中 P P P 是一个 (m−2) (m-2) (m−2) 次多项式。这里 R R R 是球的半径。如果 g g g 具有某些旋转对称性,那么 P P P 也具有。
(ii) 将 u u u 表示为齐次调和多项式的和。
(iii) 代入 x=ρsin(ϕ)cos(θ), y=ρsin(ϕ)sin(θ), z=ρcos(ϕ). x = \rho \sin(\phi) \cos(\theta), \, y = \rho \sin(\phi) \sin(\theta), \, z = \rho \cos(\phi). x=ρsin(ϕ)cos(θ),y=ρsin(ϕ)sin(θ),z=ρcos(ϕ).
(a) g=x2+y2−z2; g = x^2 + y^2 - z^2; g=x2+y2−z2;
(b) g=z(x2+y2); g = z(x^2 + y^2); g=z(x2+y2);
© g=xyz. g = xyz. g=xyz.
(d) g=x4+y4+z4; g = x^4 + y^4 + z^4; g=x4+y4+z4;
(e) g(x,y,z)=x4; g(x, y, z) = x^4; g(x,y,z)=x4;
(f) g(x,y,z)=(x2+y2)2; g(x, y, z) = (x^2 + y^2)^2; g(x,y,z)=(x2+y2)2;
(j) g(x,y,z)=x3yz; g(x, y, z) = x^3yz; g(x,y,z)=x3yz;
(k) g(x,y,z)=(x2+y2)2; g(x, y, z) = (x^2 + y^2)^2; g(x,y,z)=(x2+y2)2;
(l) g(x,y,z)=(x2−y2)2; g(x, y, z) = (x^2 - y^2)^2; g(x,y,z)=(x2−y2)2;
解决方案
由于题目中 g g g 的个数较多,我将详细解答部分 (a)、(b)、©,并提供其他部分的解答思路和结果。对于所有部分,球的半径 R=1 R = 1 R=1。
(a) g=x2+y2−z2 g = x^2 + y^2 - z^2 g=x2+y2−z2
- g g g 是二次多项式,所以 m=2 m = 2 m=2,P P P 是次数为 m−2=0 m-2=0 m−2=0 的多项式,即常数。
- 设 u=g−P(x2+y2+z2−1) u = g - P (x^2 + y^2 + z^2 - 1) u=g−P(x2+y

最低0.47元/天 解锁文章
16

被折叠的 条评论
为什么被折叠?



