5-7 陪集和拉格朗日定理

思维导图:

 

 

 

5-7 陪集的定义和概念

  1. 定义 5-7.1 (集合的积和逆)

    • 定义集合的积 AB = {a*b | a ∈ A, b ∈ B}
    • 定义集合的逆 A⁻¹ = {a⁻¹ | a ∈ A}
  2. 定义 5-7.2 (陪集)

    • 左陪集:对于群 <G, *> 中的子群 <H, *>G 中的元素 a,左陪集由集合 {a}H 表示,记为 aH
    • 右陪集:类似地,右陪集由集合 H{a} 表示,记为 Ha
    • 陪集是群中子群的“自然”扩展。

例子和应用

  • 例子 1
    • 考虑群 (G, +) 为实数对的集合 R×R 上的加法群。
    • 子群 H = {(x, y) | y = 2x}
    • 任意元素 (xo, yo) ∈ G 的左陪集表示为平面上通过点 (xo, yo) 且平行于直线 y = 2x 的直线。

拉格朗日定理

  • 定理 5-7.1 (拉格朗日定理)
    • 子群 <H, *> 将群 <G, *> 划分为等价类,每个等价类都是一个左陪集。
    • 如果 G 是有限群,其阶为 nH 的阶为 m,则 nm 的倍数。

推论和应用

  • 推论 1:质数阶的群不可能有非平凡子群。
  • 推论 2:任何有限群 G 的元素 a 的阶是 |G| 的因子,且对于质数阶 n,群 <G, *> 必是循环群。

其他例题

  • 例题 1:考虑四元群 <K, *>,证明它是一个群但不是循环群(称为Klein四元群)。
  • 例题 2:任何四阶群要么是四阶循环群,要么是Klein四元群。如果群包含一个四阶元素,则是循环群;如果不包含,则所有元素(除了幺元)都是二阶元素,从而是Klein四元群。

 

 定义:

定义 5-7.1

  1. 集合的积 (AB)

    • 定义:给定两个集合 A 和 B(这里假设 A,B⊆G),其中 G 是一个群,集合 A 和 B 的积定义为集合 AB,其中包含所有可能的 a∗b 的结果,a∈A 且 b∈B。
    • 形式化表示:AB={a∗b∣a∈A,b∈B}。
  2. 集合的逆 (A⁻¹)

    • 定义:给定集合 A,其逆 A−1 包含了 A 中每个元素的逆元素。
    • 形式化表示:A−1={a−1∣a∈A}。
    • 在群论中,每个元素 a∈G 都有一个唯一的逆元素 a−1 满足 a∗a−1=e 和 a−1∗a=e,其中 e 是群 G 的幺元。

解释

  • 这些定义为讨论群及其子群的结构提供了基础。例如,理解集合的积有助于后续讨论群的运算性质,以及如何从子群构造整个群的元素。
  • 集合的逆是群论中的一个关键概念,它反映了群中元素的一个基本性质:每个元素都有一个逆元素。

应用

  • 在讨论子群、陪集和群的其他结构时,这些定义是不可或缺的。例如,在讨论陪集时,我们经常利用集合的积和逆来描述和分析陪集的性质和它们如何组成整个群。

定义 5-7.2(陪集)

在群论中,给定一个群 G 和它的一个子群 H,对于 G 中的任意元素 a,我们可以构造两种类型的陪集:

  1. 左陪集:

    • 定义: aH 是 G 中的一个左陪集,其中包含所有通过将 a 与 H 中每个元素的乘积构成的元素。
    • 形式化表示: aH={a∗h∣h∈H}。
  2. 右陪集:

    • 定义: Ha 是 G 中的一个右陪集,其中包含所有通过将 H 中每个元素与 a 的乘积构成的元素。
    • 形式化表示: Ha={h∗a∣h∈H}。

在这个定义中,元素 a 被称为陪集 aH 或Ha 的“代表元素”。

重要性

陪集在群论中扮演着重要角色,因为它们揭示了子群如何组织和分割整个群。陪集的概念是理解和证明群论中的一些关键定理(例如拉格朗日定理)的基础。

注意点

  • 左陪集和右陪集:在一些群中,特别是在非交换群(非阿贝尔群)中,左陪集和右陪集可能是不同的集合。在交换群中,左陪集和右陪集总是相同的。
  • 代表元素的选择:陪集的定义是相对于其代表元素的。不同的代表元素可能定义相同的陪集。
  • 陪集的大小:任意两个陪集要么是不相交的,要么完全相同。此外,一个子群的所有左陪集或右陪集的大小都相同,并且等于子群的大小。

 定理:

定理 5-7.1 (拉格朗日定理)

设 H 是群 G 的一个子群,那么 H 的阶(即∣H∣)整除 G 的阶(即 ∣G∣)。

证明过程:

部分 (a): 定义等价关系
  1. 定义等价关系 R

    • 在 G 中定义一个等价关系 R 为:对于 G 中的任意两个元素 a 和 b,我们说 a 和 b 是等价的(记作 (a,b)∈R)当且仅当 a−1∗b∈H。
  2. 证明 R 是等价关系

    • 反身性:对任意 a∈G,有 a−1∗a=e∈H,因此 (a,a)∈R。
    • 对称性:如果 (a,b)∈R,则 a−1∗b∈H。由于 H 是子群,(a−1∗b)−1∈H。而 (a−1∗b)−1=b−1∗a,因此 (b,a)∈R。
    • 传递性:如果 (a,b)∈R 和 (b,c)∈R,则 a−1∗b∈H 且 b−1∗c∈H。因为 H 是子群,所以 (a−1∗b)∗(b−1∗c)∈H,也就是 a−1∗c∈H,因此 (a,c)∈R。
部分 (b): 子群的阶整除群的阶
  1. 构造左陪集

    • 对于 G 中的每个元素 a,构造左陪集 aH={a∗h∣h∈H}。
  2. 证明所有左陪集的大小相同

    • 由于 H 是子群,每个左陪集 aH 的大小等于 H 的大小。
  3. 证明 �G 是这些左陪集的不相交并集

    • G 可以划分成若干个不相交的左陪集。
  4. 结论

    • 由于 G 是这些左陪集的不相交并集,且这些左陪集的大小都等于 ∣H∣,G 的大小 ∣G∣ 必须是 ∣H∣ 的倍数。因此,∣H∣ 整除 ∣G∣。

结论

拉格朗日定理不仅揭示了子群和整个群之间的一个重要数学关系,而且在分析群的结构以及群中元素的性质时起着关键作用。这个定理在群论中是基础性的,为理解更复杂的群结构和理论提供了重要的工具。

学到了什么?

  1. 等价关系的应用:证明展示了如何在群中定义等价关系。这种方法不仅适用于群论,也是现代数学中处理类似结构的一种通用技巧。

  2. 子群和整群的关系:拉格朗日定理深刻地表明了子群的阶(大小)如何与整个群的阶(大小)相关联。这是理解群的内部结构的关键。

  3. 陪集的概念:通过陪集的概念,我们可以看到群如何被其子群“划分”。这不仅是对群结构的一种洞察,也是一种在群论中处理和分析群的强大工具。

  4. 数学证明的结构:这个证明通过逐步的逻辑推理展示了如何从基本的群性质(如封闭性和逆元素的存在)出发,建立更复杂的概念(如等价类和陪集)。

  5. 群论的普适性:拉格朗日定理和其证明展示了群论作为数学一个分支的普适性和强大之处。群论不仅用于抽象代数,还广泛应用于数学的其他领域以及物理学、计算机科学等。

  6. 数学的创造性:证明过程中的创造性思维,例如定义等价关系和分析陪集,展示了解决复杂数学问题时的创新方法。

  7. 分析有限结构的策略:拉格朗日定理特别适用于有限群,这为分析和理解有限数学结构提供了一个有力的工具。

综上所述,拉格朗日定理的证明不仅是群论的一个重要部分,也是理解数学证明和数学思维方式的一个很好的实例。

数学思想

  1. 群的结构分析:拉格朗日定理深入探讨了群的内部结构,尤其是子群和陪集如何共同构成整个群。
  2. 整除性质:定理揭示了子群大小和整个群大小之间的整除关系,这是一种数学上的整数分割概念。
  3. 对称性和等价性:通过定义等价关系,证明强调了对称性和等价性在群结构中的重要性。

数学思维

  1. 构建和利用等价关系:在群内部定义等价关系是解决群论问题的一个关键思维方式。
  2. 从抽象到具体:从群的一般定义出发,逐步推导出具体的结构性质。
  3. 分解复杂结构:通过将群分解为陪集,证明展示了如何通过简化复杂结构来理解群。

数学证明方法

  1. 构造法:通过构造陪集和等价关系来证明定理的核心部分。
  2. 反身性、对称性、传递性的检验:在证明等价关系时,遵循这三个标准的步骤。
  3. 不相交集合的使用:利用群可以被其子群的陪集划分为不相交集合的性质。

数学证明处理技巧

  1. 逐步推理:证明从基本群理论的定义出发,逐步建立必要的概念,并最终达到结论。
  2. 利用群的性质:充分利用了群的封闭性、结合律和逆元素的存在等基本性质。
  3. 应用直观理解:例如,将陪集理解为通过点和直线的几何关系,帮助理解抽象的代数概念。
  4. 等价类的划分:通过将群分解为子群的陪集,来简化群的结构分析。

综上,拉格朗日定理的证明是对群论核心概念的一次深入挖掘,它不仅展示了群论的强大和优雅,还提供了一种方法来理解和处理其他数学和非数学问题。

 

 总结:

重点

  1. 陪集的定义:理解左陪集 aH 和右陪集 Ha 的概念,以及它们是如何构成的。
  2. 拉格朗日定理:这是一个关键的定理,说明了子群的阶(大小)整除整个群的阶。
  3. 等价关系:理解拉格朗日定理证明中定义的等价关系,以及它是如何将群 G 划分成子群 H 的陪集的。

难点

  1. 陪集的理解:理解陪集可能在初学时显得抽象,特别是在非阿贝尔群(非交换群)中左陪集和右陪集可能不相同。
  2. 定理证明的逻辑:拉格朗日定理的证明涉及多个步骤和概念,如等价关系的建立和陪集的性质,这需要仔细的逻辑推理。
  3. 子群与整群关系的理解:理解子群如何在整个群中分布,以及它们的大小如何决定整个群的结构。

易错点

  1. 忽略非交换群中陪集的差异:在非交换群中,左陪集和右陪集可能不同,这一点容易被忽视。
  2. 混淆陪集和子群:陪集是由子群和群中一个元素的乘积构成的集合,不要将其与子群本身混淆。
  3. 错解拉格朗日定理:错误地认为拉格朗日定理意味着群中每个元素的阶必须整除群的阶。实际上,定理说的是子群的阶整除群的阶。
  4. 等价关系的理解:在证明过程中,等价关系的构建是关键步骤,但也容易被误解或不正确应用。

理解这些概念和定理需要时间和实践,尤其是在抽象层面上。定期复习和应用这些概念到具体例子中可以帮助加深理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值