拓扑--代数拓扑2

单纯复形的同调群


(1)几何独立(仿射独立):N维欧氏空间 R^{N} 中的一个点集 \left \{ a_{0},...,a_{n} \right \} 称为几何独立或仿射独立的,如果等式

\sum_{i=0}^{n}t_{i}a_{i}=0 \,\, and \,\, \sum_{i=0}^{n}t_{i}=0

仅在每一个纯量 t_{i}=0 时才成立。这等价于 R^{N} 中的向量集 a_{1}-a_{0},...,a_{n}-a_{0} 线性独立

(2)n-维平面:设 \left \{ a_{0},...,a_{n} \right \}  为 R^{N} 中的一个几何独立点集,由它确定的点x的集合 \left \{x=\sum_{i=0}^{n}t_{i}a_{i} \,\,|\,\, \sum_{i=0}^{n}t_{i}=1 \right \} ,称为n-维平面P,其中 t_{i} 是一些标量。这可以写成

x=a_{0}+\sum_{i=1}^{n}t_{i}(a_{i}-a_{0})

因此P可以描述成由点集 \left \{ a_{0},...,a_{n} \right \} 确定的平面,或者说过点 a_{0},并且与向量 a_{1}-a_{0},...,a_{n}-a_{0} 平行的平面

(3)单形(单纯形):设 \left \{ a_{0},...,a_{n} \right \}  为 R^{N} 中的一个几何独立点集,点集 \sigma=\left \{x=\sum_{i=0}^{n}t_{i}a_{i} \,\,|\,\, \sum_{i=0}^{n}t_{i}=1, t_{i}\geq 0, t_{i} \in R \right \} 称为由 a_{0},...,a_{n} 张成的n维单形,记作\sigma,这n+1个点称为单形的顶点。由 \left \{ a_{0},...,a_{n} \right \} 的子集张成的任何单形都称为 \sigma 的面

1维单形x=ta_{0}+(1-t)a_{1}, \, 0\leq t\leq 1 是连接 a_{0}, a_{1} 的线段;2维单形是三角形;3维单形是四面体

(4)凸集:对 R^{N} 的子集A,如果A中任意两点x,y,连接它们的线段都在A中,就称A是凸的

(5)n维单位球 B^{n} : \left \| x \right \|=\sqrt{\sum_{i=1}^{n}x_{i}^{2}}\leq 1 ,特别地,B^{1} 就是单位区间 [0, 1],B^{0} 就是一个点;

单位球面 S^{n-1}: \left \| x \right \|=1 ,特别地,S^{0}=\left \{ x \in E^{1} \,|\, \left | x \right |=1 \right \} 由两点-1, 1构成

(6)单纯复形:R^{N} 中的一个单形族 K=\left \{ \sigma_{\alpha} \,|\, \alpha \in J \right \},满足K的单形的每一个面都在K中,K的任何两个单形的交是它们之中每个单形的面(也可表述为任意两个单形内部不相交),则称K为单纯复形;

子复形:L是K的一个子集族,且包含其成员的所有面,则L自身也是一个单纯复形,称为K的子复形;

p维骨架:K中的至多p维的所有单形组成的子复形,称为p维骨架,记作 K^{(p)} 。集族 K^{(0)} 称为复形K的顶点;

K的维数:定义为K中单形的最大维数,记作 dimK。

(7)可剖空间(底空间):单形族K中各单形的并记作 \left | K \right | ,它是 R^{N} 的子集,对每个单形给出它作为 R^{N} 子空间的自然拓扑,这样用 \left | K \right | 中的闭子集族就可以定义一个拓扑,因为有限并和任意交都封闭。这样的拓扑空间 \left | K \right |  称为K的可剖空间

多面体:单纯复形K的可剖空间 \left | K \right |,称为多面体

(8)凝聚拓扑:设X是一个空间,\mathcal{C} 是X的子空间组成的集族,且它们的并等于X,即 X=\bigcup_{C \in \mathcal{C}}C 。若一个集合A在X中是闭集当且仅当对每一个 C \in \mathcal{C}A\cap C 在C中都是闭集,则称X的拓扑是关于集族 \mathcal{C} 凝聚拓扑

性质:多面体 \left | K \right | 的拓扑是各个单形子空间 \sigma \in K 组成的集族的凝聚拓扑

(9)多面体 \left | K \right | 的三个特殊子空间:

星形  :顶点 v 在复形K中的星形,是那些以 v 为一个顶点的单形的内部之并,记作 Stv 。它是开集,并且是道路连通的;

闭星形:是星形的闭包 \overline{St}v ,它是复形K的以 v 为一个顶点的单形之并,也是K的一个子复形的可剖空间。 \overline{St}v 也是道路连通的;

链环:集合 \overline{St}v - Stv 称为链环,记作 Lkv ,它是 \overline{St}v 与 Stv 的余集的交,也是K的一个子复形的可剖空间。 Lkv 不一定是道路连通的。

(10)局部有限复形:复形K的每个顶点只属于有限多个单形,则称K是局部有限的复形。也就是说,一个复形K是局部有限的,当且仅当每个闭星形 \overline{St}\,v 是K的一个局部有限子复形的可剖空间

(11)单纯映射:设 K, L是两个复形,f: K^{(0)} \to L^{(0)} 是一个映射,如果每当K的顶点 v_{0},...,v_{n} 张成K的一个单形时,f(v_{0}),...,f(v_{n}) 都是L的一个单形的顶点,那么 f 能扩张成一个连续映射 g: \left | K \right | \to \left | L \right | ,使得x=\sum_{i=0}^{n}t_{i}v_{i} \Rightarrow g(x)=\sum_{i=0}^{n}t_{i}f(v_{i}) ,则g称为由顶点映射f诱导的(线性)单纯映射;

单纯同胚:f: K^{(0)} \to L^{(0)} 是一个双射,使得K的顶点 v_{0},...,v_{n} 张成K的一个单形当且仅当 f(v_{0}),...,f(v_{n}) 张成L的一个单形,则诱导单纯映射 g: \left | K \right | \to \left | L \right | 称为K与L的一个单纯同胚

(11)抽象复形:一个非空有限集组成和集族T,满足如果A是T的元素,那么A的每个非空子集也是T的元素。T的元素A称为T中的单形,A的非空子集称为A的一个面。T的顶点集V是T中单点元素的并,即顶点都是0维单形 \left \{ v \right \} \in T。T的一个子族若是复形,则称为T的子复形

(12)顶点格式:设V是单纯复形K的顶点集,V中所有能张成K的一个单形的子集 \left \{ a_{0},...,a_{n} \right \} 组成的集族 H,称为K的顶点格式。实际上这样的集族H就是一个抽象复形,而K是它的一个几何实现

几何实现:若单纯复形K的顶点格式与抽象复形T同构,则称K是T一个几何实现。在线性同构的意义下抽象复形的几何实现是唯一的

(13)自由群:群运算用加法表示。设X是群G的一个生成元集,如果对任意互不相等的 x_{1},...,x_{t} \in X,都有 m_{1}x_{1} + m_{2}x_{2} + ... + m_{t}x_{t} \neq e,其中 m_{1},...,m_{t} 是任意非零整数,则称X为群G的一个自由生成元集。存在自由生成元集的群G,称为自由群;如果G的每个元素g都能唯一地写成X中元素的有限乘积 g=m_{1}x_{1} + m_{2}x_{2} + ... + m_{t}x_{t} ,称为X的中元素为群G的基,也称X生成群G。X为有限集时,称G是有限生成的。基X中的元素个数称为G的,记作 rank(G)

(14)定向单形:\sigma 为一个p维单纯形,它的 p+1 个顶点有 (p+1)! 种不同排列次序,定义相差一个偶置换的两个排列为一种等价关系, 这些排列可以分为两个等价类,同一个等价类中的任意两个排列之间相差一个偶置换。而不同等价类之间的任意两个排列相差一个奇置换这样的两个排列称为单纯形 \sigma 的两个互为相反的定向,指定了定向的单形就叫做定向单形。我们把定向单形记作 [v_{0},...,v_{p}] ,或简写为 v_{0}v_{1}...v_{q},这表示以排列 v_{0},...,v_{p} 为定向的单形。注意与 \sigma 的定向相反的单形记作 -\sigma 。对于 0,...,p 的任意置换\theta[v_{0},...,v_{1}]=sign\theta \,[(v_{\theta(0)},...,v_{\theta(q)}] ,当\theta为偶置换时 sign\theta=1 ,当\theta为奇置换时 sign\theta=-1 。0维单形即单个点只有一种定向

例子:

三个顶点的2维单形 s=[a,b,c],顶点排列有6种abc, bca, cab, acb, cba, bac,前三个定向相同,后三个定向也相同,两组之间则定向相反,可记作 abc=bca=cab=-acb=-cba=-bac

(15)单纯链:设K是一个有限单纯复形,K中全体p维定向单形的一个线性组合 c=n_{1}\sigma_{1} + n_{2}\sigma_{2} + ...+ n_{s}\sigma_{s} \, (n_{i} \in Z) 称为一个p维单纯链,如果系数 n_{j}=0 ,这一项自然可以略去。p维单纯链也可以把它理解为p维定向单形集合到整数的一个函数 c 。对单个的单形 \sigma ,其基本链 c 定义为函数 c(\sigma)=1 ,若 \sigma^{'} 是 \sigma 的相反定向则 c(\sigma^{'})=-1 ,对所有其他的定向单形 \tau 则 c(\tau)=0 ,基本链可直接写作 \sigma ,这样p维单纯链就是各个基本链的一个线性组合,它满足关系 c+(-c)=0 ;

单纯链群:所有p维单纯链构成的集合记作 C_{p}(K) 。设另一个p维单纯链为 d=m_{1}\sigma_{1} + m_{2}\sigma_{2} + ...+ m_{s}\sigma_{s} ,定义两个链的和为 c+d=\sum_{i=1}^{s}(n_{i}+m_{i})\sigma_{i} ,C_{p}(K) 关于此加法构成一个群,称为K的p维单纯链群。当 p<0 或 p>dimK ,约定它为平凡群 C_{p}(K)=0 。一个n维复形K有 n+1 个链群 C_{0}(K), C_{1}(K),...,C_{n}(K) ;

单纯链群性质:链群 C_{p}(K) 是自由Abel群,所有的p维定向单形 \left \{ \sigma_{1},...,\sigma_{s} \right \} 构成它的基;

无穷链的单纯链群:对于无限的复形,可以类似地定义p维无穷单纯链,基于无穷链构成的链群为 C_{p}^{\infty}(K) ,它也是Abel群,但一般不是自由的

(16)边缘算子:一个p维定向单形 \sigma=[v_{0},...,v_{p}] 的边缘定义为 \partial_{p}(\sigma)=\sum_{i=1}^{p}(-1)^{i}[v_{0},...,\hat{v_{i}},...,v_{p}] ,其中 [v_{0},...,\hat{v_{i}},...,v_{p}] 表示去掉顶点 \hat{v_{i}} 所得的 p-1 维定向单形,称为 \sigma 的一个顺向面。即p维定向单形的边缘就是将每个 p-1 维面给以定向,然后再把它们相加而得到的 p-1 维链;

对任意p维链 x \in C_{p}(K), \, x=\sum_{i=1}^{s}n_{i}\sigma_{i} ,定义 \partial_{p}(x)=\sum_{i=1}^{s}n_{i} \partial_{p} \sigma_{i} \in C_{p-1}(K) ,不难验证对任意 x,y \in C_{p}(K) ,有 

\partial_{p}(x)+\partial_{p}(-x)=0

\partial_{p}(x+y)=\partial_{p}(x)+\partial_{p}(y)

\partial_{p}(kx)=k\partial_{p}(x), \, k \in Z

因此算子 \partial_{p} 是一个同态 \partial_{p}: C_{p}(K) \to C_{p-1}(K) ,称为链群 C_{p}(K) 的边缘算子或边缘同态,约定当 p\leq 0 时它是平凡同态,而且 \partial_{0}=0 。\partial_{p}(\sigma) 的定义与定向单形的顶点的顺序无关,边缘算子在 C_{p}(K) 上的作用也与p维单形的定向选取无关;

边缘算子性质:\partial_{p} \circ \partial_{p+1}=0 ,即对任意 x \in C_{p+1}(K) 有 \partial_{p} \partial_{p+1}(x)=0 ;

例子:

对1维定向单形 s=[a_{0},a_{1}] 有 \partial_{1}[a_{0}a_{1}]=a_{1}-a_{0} ;

对2维定向单形 s=[a_{0},a_{1},a_{2}] 有 \partial_{2}[a_{0}a_{1}a_{2}]=\partial_{2}[a_{1}a_{2}a_{0}]=\partial_{2}[a_{2}a_{0}a_{1}]=a_{1}a_{2}-a_{0}a_{2}+a_{0}a_{1} , \partial_{2}[a_{0}a_{2}a_{1}]=\partial_{2}[a_{2}a_{1}a_{0}]=\partial_{2}[a_{1}a_{0}a_{2}]=a_{2}a_{1}+a_{1}a_{0}+a_{0}a_{2}=\partial_{2}[-a_{0}a_{1}a_{2}] ,这里 a_{1}a_{2} 表示定向单形 [a_{1}a_{2}] 的简写;

对3维单形有 \partial_{3}(a_{0}a_{1}a_{2}a_{3})=a_{1}a_{2}a_{3}-a_{1}a_{2}a_{3}-a_{0}a_{2}a_{3}+a_{0}a_{1}a_{3}-a_{0}a_{1}a_{2} 。

(17)单纯闭链:对 x \in C_{p}(K) ,如果 \partial_{p}(x)=0 ,则称 x 为K上的一个p维单纯闭链;

单纯边缘链:对 x \in C_{p}(K) ,如果存在 y \in C_{p+1}(K) ,使得 x=\partial_{p+1}(y) ,则称 x 为K上的一个p维单纯边缘链;

单纯闭链群:复形K的所有p维单纯闭链,也就是 \partial_{p}: C_{p}(K) \to C_{p-1}(K) 的核 ker \, \partial_{p} ,称为K的p维单纯闭链群 Z_{p}(K),即 Z_{p}(K)=ker \, \partial_{p}=\left \{ x \in C_{p}(K) \,|\, \partial_{p}(x)=0 \right \}  ,它是单纯链群 C_{p}(K) 的一个Abel子群。约定 Z_{0}(K)=C_{0}(K) ,当 p<0 或 p>n=dimK 时 Z_{p}(K)=0 ;

单纯边缘链群:复形K上的所有p维单纯边缘链,也就是 \partial_{p+1}: C_{p+1}(K) \to C_{p}(K) 的像 im \, \partial_{p+1} ,称为K的p维单纯边缘链群 B_{p}(K),即 B_{p}(K)=im \, \partial_{p+1}=\left \{ \partial_{p+1}(y) \,|\, y \in C_{p+1}(K) \right \}  ,它也是单纯链群 C_{p}(K) 的一个Abel子群。当 p<0 或 p>n=dimK 时 B_{p}(K)=0 ;

(18)单纯同调群:由边缘算子性质 \partial_{p}B_{p}(K)=\partial_{p}\partial_{p+1}(y)=0 ,因此任意一个单纯边缘链都是单纯闭链, B_{p}(K) 是 Z_{p}(K) 的Abel子群,这样可以定义一个商群 H_{p}(K)=Z_{p}(K)/B_{p}(K)=ker \, \partial_{p} / im \, \partial_{p+1} ,称为K的p维单纯同调群。它是有限生成的自由Abel群。它与单形的定向选取无关,是由复形K的可剖空间 \left | K \right | 决定的;

复形的Betti数和挠系数:同调群 H_{p}(K) 的Betti数和挠系数称为复形K的p维Betti数和p维挠系数

无穷链的单纯同调群:如果复形K是局部有限的,则可以类似的定义边缘算子 \partial_{p}: C_{p}^{\infty}(K) \to C_{p-1}^{\infty}(K) ,它也满足边缘算子的性质,由此得到无穷链上的同调群 H_{p}^{\infty}(K)=ker \, \partial_{p}^{\infty} / im \, \partial_{p+1}^{\infty}

(19)同调类:由p维闭链 z \in Z_{p}(K) 所确定的 H_{p}(K) 中的元素 [z]=z+B_{p}(K) \in H_{p}(K) ,称做复形K上的一个p维同调类,z是同调类 [z] 的一个代表。[x]=[y] \in H_{p}(K) 的充要条件是 x,y \in Z_{p}(K) 且 x \sim y ;

同调群的加法运算:H_{p}(K) 的元素就是所有p维同调类,对任意 [x],[y] \in H_{p}(K), \, k \in Z ,根据商群的定义,[x]+[y]=[x+y], \, [kx]=k[x] ,这就是同调群上的加法运算;

同调关系:两个p维链 x,y \in C_{p}(K) 如果它们的差为p维边缘链 x-y \in B_{p}(K) ,即存在 z \in C_{p+1}(K) ,使得 x-y=\partial_{p+1}(z) ,这时它们有相同的同调类,我们称x同调于y,记作 x\sim y 或 x-y \sim 0。特别地,当 x=\partial_{p+1}z 时称x同调于零,或者称x形成边界;

(20)承载子复形:设L是K的子复形,如果K中的p维链 x=n_{1}\sigma_{1} + n_{2}\sigma_{2} + ...+ n_{s}\sigma_{s} \, (n_{i} \in Z) 在所有不是L中的定向单形上取值都为0,即链x在L的所有单形上的取值都不为0,并且L是满足该条件是最大子复形,就称链x由子复形 L 承载。

(21)增广同态(增广映射)设 \left \{ v_{0},v_{1},...,v_{s} \right \} 是复形K的所有顶点,C_{0}(K) 中的0维链可表示为 x=\sum_{i=0}^{s}n_{i}v_{i} 。定义满同态 \varepsilon: C_{0}(K) \to Z 为对K的每个顶点 v 置 \varepsilon(v)=1 ,对每个0维链则有 \varepsilon(x) 等于x在K的顶点上的值之和,即 \varepsilon(x)=\varepsilon(\sum_{i=0}^{s}n_{i}v_{i})=\sum_{i=0}^{s}n_{i} ,而当x是1维链时有 \varepsilon(\partial x)=0 ,\varepsilon 称为 C_{0}(K) 的增广同态。注意若K是连通的则有 ker \, \varepsilon =B_{0}(K) ;

约化同调群:商群 \widetilde{H_{0}}(K)=ker \, \varepsilon / im \, \partial_{1} 称为K的零维约化同调群。当 p>0 时约定 \widetilde{H_{p}}(K) 就是通常的单纯同调群 H_{p}(K)  

(22)复形上的锥形:设K是欧氏空间 E^{J} 中的一个复形,w是 E^{J} 中的一点,使得从w出发的每一条射线与 \left | K \right | 至多交于一点,K上的以w为顶点的锥定义为所有形如 wa_{0}...a_{p} 的单形以及这些单形的所有面构成的集族,其中 a_{0}...a_{p} 是K的单形。锥形记作 w \ast K ,K称为该锥的底。锥形是一个复形。同底的两个锥形之并 (w_{0} \ast K) \cup (w_{1} \ast K) 也是一个复形,称为双角锥,记作 S(K)

(23)零调复形(正合复形):若复形的所有维数的约化同调群都为零,则该复形是零调的,或正合的

(24)相对链群:如果 K_{0} 是复形K的子复形,则商群 C_{p}(K, K_{0})=C_{p}(K)/C_{p}(K_{0}) 称为K模 K_{0} 的相对链群,也称为复形偶 (K,K_{0}) 的相对链群,它是自由群,以所有形如 \left \{ \sigma_{i} \right \}=\sigma_{i} + C_{p}(K_{0}) 的陪集为基,其中 \sigma_{i} 是在K中但不在 K_{0} 中的p维定向单形;

相对链群的边缘算子:\partial_{p}: C_{p}(K, K_{0}) \to C_{p-1}(K, K_{0}) ;

相对闭链群:Z_{p}(K,K_{0})=ker \, \partial_{p} ;

相对边缘链群:B_{p}(K,K_{0})=im \, \partial_{p+1} ;

相对同调群:复形偶 (K,K_{0}) 的相对同调群定义为 H_{p}(K,K_{0})=Z_{p}(K,K_{0})/B_{p}(K,K_{0}) 

(25)带任意系数的链群:之前的链群定义使用的是整数系数,实际可以用任意Abel群G的元素作为系数。复形K的一个带G中系数的p维链为 x=\sum_{i=1}^{s}g_{i}\sigma_{i}, \, g_{i} \in G ,其中 \left \{ \sigma_{i} \right \} 是所有p维定向单形。可用 g\sigma (g \in G) 表示定向单形 \sigma 的基本链,它在 \sigma 上的值为g,在 \sigma 的相反定向上的值是 -g 。所有p维链构成集合 C_{p}(K;G) ,表示带G中系数的链群;

带G中系数的链群边缘算子:\partial_{p}: C_{p}(K;G) \to C_{p-1}(K;G) ,由 \partial_{p}(g\sigma)=g \partial_{p}(\sigma) 加以定义;

带G中系数的闭链群:Z_{p}(K;G)=ker \, \partial_{p} ;

带G中系数的边缘链群:B_{p}(K;G)=im \, \partial_{p+1} ;

带G中系数的同调群:H_{p}(K;G)=Z_{p}(K;G)/B_{p}(K;G) ;

带G中系数的相对同调群:H_{p}(K,K_{0};G) 

(26)自由Abel群同态的矩阵:设G和F是秩为n和m的自由Abel群,它们的基分别为 a_{1},...,a_{n} 和 b_{1},...,b_{m} ,f: G \to F 是一个同态,则存在唯一的一组整数 \lambda_{ij} 满足 f(a_{j})=\sum_{i=1}^{m}\lambda_{ij}b_{i} ,把 m \times n  矩阵 \left ( \lambda_{ij} \right ) 称为 f 关于G和F的基的矩阵

(27)链复形:一个链复形 \mathcal{C}=\left \{ A_{n},d_{n} \right \} 是Abel群或模范畴上的一个连通序列,即(Abel群或模)对象序列通过一系列同态相连,使得每两个连接的映射的复合为零 d_{n}d_{n+1}=0 。写成如下形式

... \to A_{n+1} \overset{d_{n+1}}{\rightarrow} A_{n} \overset{d_{n}}{\rightarrow} A_{n-1} \to ... \to A_{1} \overset{d_{1}}{\rightarrow} A_{0}\overset{d_{0}}{\rightarrow} 0

如果对 n<0 都有 A_{n}=0 ,则称 \mathcal{C} 是非负链复形。如果对每个n,A_{n} 都是自由Abel群,则称 \mathcal{C} 是自由链复形

链复形的同调群:n维同调群定义为 H_{n}(\mathcal{C})=ker(d_{n})/im(d_{n+1}) 。如果 H_{n}(\mathcal{C}) 是有限生成的,则把它的Betti数和挠系数称为 \mathcal{C} 的n维Betti数和挠系数。如果对所有的 i 都有 H_{i}(\mathcal{C})=0 ,则称链复形是零调的,或正合的;

链复形的弱边缘群:设 Z_{n}=ker(d_{n}) 是闭链群,B_{n}=im(d_{n+1}) 是边缘群 ,则集合 W_{n}=\left \{ a \in A_{n} \,|\, ma=d_{n+1}(b) \in B_{n}, b \in A_{n+1}, m \in Z_{+} \right \} ,即所有某个非零倍数属于 B_{n} 的 A_{n} 中的元素组成的集合,它是 A_{n} 的子群,称为链复形的n维弱边缘群。显然 B_{n} \subset W_{n} \subset Z_{n} \subset A_{n}

例子:

单纯链复形:单纯链群族 \left \{ C_{p}(K) \right \} 与同态族 \left \{ \partial_{p} \right \} 写成序列 ... \to C_{p}(K) \overset{\partial_{p}}{\rightarrow} C_{p-1}(K) \overset{\partial_{p-1}}{\rightarrow} ... \overset{\partial_{1}}{\rightarrow} C_{0}(K) \overset{\partial_{0}}{\rightarrow} 0 ,此序列就是一个单纯链复形,记作 \mathcal{C}(K)=\left \{ C_{p}, \partial_{p} \right \},其同调群即为 H_{p}(K)=Z_{p}(K)/B_{p}(K)=ker \, \partial_{p} / im \, \partial_{p+1} ;

增广链复形:在单纯链复形 \mathcal{C}(K) 的-1维处添加增广同态 \varepsilon: C_{0}(K) \to Z,即 ... \to C_{p}(K) \overset{\partial_{p}}{\rightarrow} C_{p-1}(K) \overset{\partial_{p-1}}{\rightarrow} ... \overset{\partial_{1}}{\rightarrow} C_{0}(K) \overset{\varepsilon}{\rightarrow} Z \to 0 ,称为增广链复形,记作 \left \{ \mathcal{C}, \varepsilon \right \}。如果所有 i 都有 H_{i}(\left \{ \mathcal{C}, \varepsilon \right \})=\widetilde{H}_{i}(\mathcal{C})=0 ,则称增广链复形是零调的或正合的;

增广链复形的同调群:即为原链复形 \mathcal{C} 的约化同调群,记作 H_{i}(\left \{ \mathcal{C}, \varepsilon \right \}) 或 \widetilde{H}_{i}(\mathcal{C}) 。

(28)链映射:设 \mathcal{C}=\left \{ C_{p}, \partial_{p} \right \}, \, \mathcal{C}^{'}=\left \{ C_{p}^{'}, \partial_{p}^{'} \right \} 是两个链复形,一个链映射 f: \mathcal{C} \to \mathcal{C}^{'} 是一族同态 f_{p}: C_{p} \to C_{p}^{'} 使得 \partial_{p}^{'} \circ f_{p}=f_{p-1} \circ \partial_{p} 对所有p都成立;

保持增广的链映射:设 \left \{ \mathcal{C}, \varepsilon \right \}, \, \left \{ \mathcal{C}^{'},\varepsilon^{'} \right \} 是两个增广链复形,当 \varepsilon^{'} \circ f_{0}=\varepsilon 时,称链映射 f: \mathcal{C} \to \mathcal{C}^{'} 是保持增广的;

链映射的诱导同态:一个链映射 f: \mathcal{C} \to \mathcal{C}^{'} 诱导同调群的同态 (f_{\ast})_{p}: H_{p}(\mathcal{C}) \to H_{p}(\mathcal{C}^{'}) ,称为p维诱导同态;

单纯链映射 f_{\sharp} :只定义在一个单纯映射上的链映射。设 f: K \to L 是单纯映射,如果 v_{0},...,v_{p} 是K的一个单形,那么点 f(v_{0}),...,f(v_{p}) 张成L的一个单形,同态 (f_{\sharp})_{p}: C_{p}(K) \to C_{p}(L) 定义为当 f(v_{0}),...,f(v_{p}) 互不相同时 (f_{\sharp})_{p}([v_{0},...,v_{p}])=[f(v_{0}),...,f(v_{p})] ,否则 (f_{\sharp})_{p}([v_{0},...,v_{p}])=0 ,通常省略维数下标简写为 f_{\sharp} ,注意交换表达式 [v_{0},...,v_{p}] 中的两个顶点将会改变等式右边的符号。f_{\sharp} 称为 f 诱导的p维单纯链映射。 f_{\sharp} 会把闭链映到闭链,把边缘链映到边缘链。由此可见,单纯链映射是一种特殊的链映射,把各个维数下的单纯链映射 f_{\sharp} 组成一个同态族 \left \{ f_{\sharp} \right \} ,则就是通常的链映射,称它为单纯映射 f 诱导的链映射;

 单纯链映射 f_{\sharp} 也会诱导同调群的同态 f_{\ast}: H_{p}(K) \to H_{p}(L) ,以及约化同调群的同态 f_{\ast}: \widetilde{H_{p}}(K) \to \widetilde{H_{p}}(L)  ,它们称为单纯映射 f: K \to L 的p维诱导同态

(29)链同伦:如果 f,g: \mathcal{C} \to \mathcal{C}^{'} 是定义在同一对链复形之间的两个链映射,那么 f 到 g 的一个链同伦定义为一族同态 D_{p}:C_{p} \to C_{p+1}^{'} 使得对所有 p 都有 \partial_{p+1}^{'}D_{p} + D_{p-1}\partial_{p}=g_{p}-f_{p} ,可简写为 \partial^{'} D + D \partial = g-f 。链同伦是链映射集合上的等价关系,链映射的复合在链同伦类上诱导一个完全确定的复合运算。链同伦记作 f \simeq g ;

单纯链同伦:特殊的链同伦,即只定义在单纯映射上的链同伦。设 f,g: K \to L 是两个单纯映射,如果对每个p都有一个同态 D_{p}: C_{p}(K) \to C_{p+1}(L) 满足等式 \partial_{p+1}D_{p} + D_{p-1}\partial_{p}=(g_{\sharp})_{p}-(f_{\sharp})_{p} ,可简写为 \partial D + D \partial = g_{\sharp}-f_{\sharp} ,那么D称为 f_{\sharp}, \, g_{\sharp} 之间的一个单纯链同伦,记作 f_{\sharp} \simeq g_{\sharp}。可以用下列图表表示

链等价(链同伦等价):对一个链映射 f: \mathcal{C} \to \mathcal{C}^{'} ,如果存在一个链映射 g: \mathcal{C}^{'} \to \mathcal{C} 使得 g \circ f, \, f \circ g 分别链同伦于 \mathcal{C}, \, \mathcal{C}^{'} 上的恒等映射,即 g \circ f \simeq id_{C}, \, f \circ g \simeq id_{C^{'}} ,则称链映射 f 是一个链等价,g 称为 f 的链同伦逆。

(30)单纯映射的连接:设 f,g: K \to L 都是单纯映射,如果对K的每个定向单形 \sigma=v_{0},...,v_{p} ,诸点 f(v_{0}),...,f(v_{p}),g(v_{0}),...,g(v_{p}) 张成L的一个单形 \tau ,则称这个单纯映射是相连接的。其中单形 \tau 可能具有从0到2p+1的任何一种维数,这取决于上面这些点中有多少是互不相同的。另外两个单形 f(\sigma), g(\sigma) 都是单形 \tau 的面

(31)定向链复形:由相对链群组成的链复形 \mathcal{C}(K,K_{0})=\left \{ C_{p}(K,K_{0}),\partial_{p} \right \} ,称为复形偶 (K,K_{0}) 的定向链复形。它是自由的,也是非负的,但是一般没有增广

(32)零调承载子:对两个复形 K,L,函数 \Phi: K \to L 如果满足对K的每个单形 \sigma ,\Phi(\sigma) 是非空的零调的子复形, 并且当 s 是 \sigma 的一个面时有 \Phi(s) \subset \Phi(\sigma) ,就称 \Phi 是一个K到L的零调承载子;

设 f: C_{p}(K) \to C_{q}(L) 是一个同态,\Phi: K \to L 是零调承载子,如果对K的每个p维定向单形 \sigma ,\Phi(\sigma) 是链 f(\sigma) 的承载子复形,就称 f 由 \Phi 承载

(33)有序单纯同调群:

p维有序单形:设K是一个单纯复形,K的顶点构成的p+1元组 (v_{0},...,v_{p}) ,这些顶点不必是互不相同,称为K的一个p维有序单形。有序列单形与定向单形不同的是顶点可以相同 ,例如若 vw 是K的一个一维定向单形,那么(v, w, w, v) 是K的一个3维有序单形;

p维有序单纯链群:由K的p维有序单形生成的自由Abel群。它是由所有p维有序列链作为群的元素,以自然的方式定义加法运算,而得到的群,记作 C_{p}^{'}(K) ;

边缘算子:定义有序单形的边缘运算 \partial_{p}^{'}(v_{0},...,v_{p})=\sum_{i=0}^{p}(-1)^{i}(v_{0},...,\hat{v}_{i},...,v_{p}) ,由此可确定一个同态 \partial_{p}^{'}: C_{p}^{'}(K) \to C_{p-1}^{'}(K) 。有性质 \partial_{p}^{'} \circ \partial_{p+1}^{'}=0 ;

有序单纯链复形:\mathcal{C}^{'}(K)=\left \{ C_{p}^{'}(K), \partial_{p}^{'} \right \} ,可以通过对K的每个顶点定义 \varepsilon^{'}(v)=1 而把它增广;

有序单纯同调群:H_{p}(\mathcal{C}^{'}(K))=ker \, \partial_{p}^{'} / im \, \partial_{p+1}^{'} ;

有序链映射:设 f: K \to L 是一个单纯映射,定义 f_{\sharp}^{'}: \mathcal{C}^{'}(K) \to \mathcal{C}^{'}(L) 为 f_{\sharp}^{'}((v_{0},...,v_{p}))=(f(v_{0}),...,f(v_{p})) ,则 f_{\sharp}^{'} 是链映射。对相对有充链群,相应的有 f_{\sharp}^{'}: \mathcal{C}^{'}(K,K_{0}) \to \mathcal{C}^{'}(L,L_{0}) 。它们诱导的同态为 f_{\ast}^{'}: H_{p}(\mathcal{C}^{'}(K)) \to H_{p}(\mathcal{C}^{'}(L)) ,以及 f_{\ast}^{'}: H_{p}(\mathcal{C}^{'}(K,K_{0})) \to H_{p}(\mathcal{C}^{'}(L,L_{0})) 

(34)单纯链群与有序链群之间的链映射:选取单纯复形K的顶点的一种偏序,使得它在K的每个单形的顶点上诱导一个线性序,对给定的序 v_{0}<v_{1}<...<v_{p} ,定义 \phi: C_{p}(K) \to C_{p}^{'}(K) 为 \phi([v_{0},...,v_{p}])=(v_{0},...,v_{p}) ,即把定向单形映为有序单形。定义 \varphi: C_{p}^{'}(K) \to C_{p}(K) 为  \varphi((v_{0},...,v_{p}))=[v_{0},...,v_{p}]  若 v_{i} 是互不相同的,否则 \varphi((v_{0},...,v_{p}))=0 。那么 \phi, \, \varphi 都是保持增广的链映射,并且它们是链等价的。它们的诱导同态为 \phi_{\ast}: \widetilde{H}_{p}(K) \to \widetilde{H}_{p}(\mathcal{C}^{'}(K)) ,和 \varphi: \widetilde{H}_{p}(\mathcal{C}^{'}(K)) \to \widetilde{H}_{p}(K)  

 

定理:

(1)单形的性质:

单形 \sigma 是 R^{N} 中的紧致凸集,它是包含 \left \{ a_{0},...,a_{n} \right \} 的最小凸集;

\sigma 的内部是凸集并且在平面P中是开集,它是闭包是 \sigma ;

n维单形 \sigma 与n维单位球 B^{n} 之间存在一个同胚,并且它把边界 Bd \, \sigma 映射到单位球面 S^{n-1} 上;

(2)更强的结论:若U是 R^{n} 中的有界凸集,则对任意给定的一点 \omega \in U,每一条从 \omega 出发的射线都与 Bd U=\bar{U}-U 恰好交于一点;并且在 \bar{U} 与 B^{n} 之间存在一个同胚把 BdU映射到 S^{n-1} 上

证明思路:f(x)=\frac{x}{\left \| x \right \|} 是 R^{n}-0 到 S^{n-1} 上的连续映射,它在BdU上的限制是同胚,把其逆映射f^{-1}: S^{n-1} \to BdU扩张成最终的同胚 G: B^{n} \to \bar{U} ,定义为

G(x)=\left\{\begin{matrix} \left \| f^{-1}(\frac{x}{\left \| x \right \|}) \right \|x, & x\neq 0 \\ 0, & x=0 \end{matrix}\right.

(3)复形的性质:

如果L是复形K的子复形,那么 \left | L \right | 是多面体 \left | K \right | 的闭子空间;特别地,若单形 \sigma \in K,那么 \sigma 是K的闭子空间;

多面体到空间X的映射 f: \left | K \right | \to X 是连续的,当且仅当对每个单形 \sigma \in Kf|_{\sigma} 都是连续的;

多面体 \left | K \right | 是Hausdorff空间、是正规空间;

如果复形K是有限的,那么 \left | K \right | 是紧致的;反之如果 \left | K \right | 的一个子集A是紧致的,那么存在K的某个有限子复形 K_{0},使得 A \subset \left | K_{0} \right | ;

复形K是局部有限的,当且仅当可剖空间 \left | K \right | 是局部紧致的;

复形K是局部有限的,当且仅当可剖空间 \left | K \right | 是可度量化的。

(4)抽象复形的性质:每个抽象复形同构于某个单纯复形的顶点格式;两个单纯复形线性同构当且仅当它们的顶点格式作为抽象复形是同构的

(5)自由Abel群同态的扩张性质:如果Abel群G有一个基 \left \{ g_{\alpha} \right \} ,那么从集合 \left \{ g_{\alpha} \right \} 到一个Abel群H的的任何函数f都可以扩张成从G到H的一个同态;

直和的扩张性质:如果Abel群是子群族 \left \{ G_{\alpha} \right \} 的直和,对每个下标都有从 G_{\alpha} 到Abel群H的同态 f_{\alpha} ,则 \left \{ f_{\alpha} \right \} 可以唯一地扩张成G到H的一个同态

(6)直和的一个必要条件:如果Abel群是子群族 \left \{ G_{\alpha} \right \} 的直和,那么就有同态 j_{\beta}: G_{\beta} \to G, \, \pi_{\beta}: G \to G_{\beta} ,使得 \pi_{\beta} \circ j_{\alpha} 当 \alpha\neq \beta 是零同态,当 \alpha = \beta 时是恒等同态

(7)自由Abel群的性质:如果F是秩为n,基为 \left \{ e_{1},...,e_{n} \right \} 的自由Abel群,那么它的任何子群R都是秩为 r \leq n 的自由Abel群,并且存在整数 t_{1},...,t_{n} (t_{i}>1) ,使得 \left \{ t_{1}e_{1},...,t_{n}e_{n} \right \} 是R的一个基,t_{1} \,|\, t_{2} \,|\, ... |\, t_{n} ,即 t_{i} 整除 t_{i+1} ,其中整数 t_{1},...,t_{n} (t_{i}>1) 是由F和R唯一确定的,尽管基 \left \{ e_{1},...,e_{n} \right \} 不是唯一的

(8)有限生成Abel群的结构定理:若G是有限个元素生成的Abel群,T是它的挠子群,则G可分解为一个秩为 r 的自由Abel子群H和挠子群T的直和,即 G=H \bigoplus T ;存在阶分别为 t_{1},...,t_{k} (t_{i}>1) 的有限循环群 T_{1},...,T_{k} ,使得 t_{1} \,|\, t_{2} \,|\, ... |\, t_{k} 并且 T=T_{1} \oplus ... \oplus T_{k} ,数 r 和 t_{1},...,t_{k} 是由G唯一确定的,r 称为群G的Betti数t_{1},...,t_{k} 称为群G的挠系数不变因子

这个定理说明任何有限生成的Abel群G都能写成循环群的有限直和 G \cong (Z \oplus ... \oplus Z) \oplus (Z/t_{1} \oplus ... \oplus Z/t_{k}) ,其中 t_{i}>1 并且 t_{1} \,|\, t_{2} \,|\, ... |\, t_{k} ;

另外一种表述:因为 m,n 互素时有 Z/m \oplus Z/n \cong Z/mn ,即任何有限循环群都能写成阶是素数幂的循环群的直和,于是上述定理可以表述成对任何有限生成的Abel群G,有 G \cong (Z \oplus ... \oplus Z) \oplus (Z/a_{1} \oplus ... \oplus Z/a_{s}) ,其中每个 a_{i} 都是素数的幂,这些素数幂 a_{1},...,a_{s} 由G唯一确定,称为G的初等因子

(9)多连通复形的同调群:如果复形K是r个连通分支的非交并,即 K=\bigcup_{i=1}^{r}K_{i}, \, K_{i} \cap K_{j}=\varnothing ,每一个子复形 K_{i} 连通,那么

H_{p}(K) \cong H_{p}(K_{1}) \oplus H_{p}(K_{2}) \oplus ... \oplus H_{p}(K_{r})

(10)零维同调群的计算:复形K的零维单纯同调群 H_{0}(K) 是自由Abel群,如果 \left \{ v_{i} \right \}_{i \in J} 是从 \left | K \right | 的每一个分支取一个顶点组成的集合,那么

H_{0}(K) \cong \bigoplus_{i \in J}Z

对每个 i ,链 v_{i} 的同调类 [v_{i}]=v_{i}+B_{0}(K) \in H_{0}(K) 就构成 H_{0}(K) 的一个基。特别地,当K是单连通的时,H_{0}(K) \cong Z 。

零维约化同调群的计算: \widetilde{H_{0}}(K) 也是自由Abel群,并且 \widetilde{H_{0}}(K) \oplus Z \cong H_{0}(K) ,如果 \left | K \right | 是连通的则 \widetilde{H_{0}}(K)=0 ,这时即有 H_{0}(K) \cong Z ,每一个顶点 v_{i} 的同调类都可以作为 H_{0}(K) 的生成元;如果 \left | K \right | 是不连通的,设 s 是一个固定的指标,那么链 v_{i}-v_{s} \, (i \neq s) 的同调类就构成 \widetilde{H_{0}}(K) 的基

(11)锥形的同调群:锥形是零调的,即对所有p恒有 \widetilde{H_{p}}(w \ast K)=0 ,可见 H_{0}(w \ast K) \cong Z, \, H_{p}(w \ast K) =0 (p>0) ;

n维单形及其边缘的同调群:设 \sigma 是一个n (n>0) 维单形,K_{\sigma} 是 \sigma 及其面组成的复形,那么 K_{\sigma} 是零调的,即 \widetilde{H_{p}}(K_{\sigma})=0 。设 \Sigma^{n-1} 表示可剖空间为 Bd \, \sigma 的复形,那么 \widetilde{H}_{n-1}(\Sigma^{n-1}) \cong Z ,即为无限循环群,链 \partial_{n} \sigma 是它的自由生成元;对 i\neq n-1 ,有 \widetilde{H}_{i}(\Sigma^{n-1}) =0 

(12)复形的切除定理:若K是复形,A \subset K 是子复形,U \subset A 是A中的开子集,从K和A分别切除U后的子空间 K-U \subset K, A-U \subset K 仍然是子复形,那么复形偶 (K-U, A-U) 与 (K, A) 的相对同调群是同构的,即 H_{p}(K-U,A-U) \cong H_{p}(K,A) 

(13)自由Abel群同态的矩阵标准形:设G和F是秩为n和m的自由Abel群,f: G \to F 是一个同态,那么存在G和F的基使得 f 关于这些基的矩阵具有如下标准形式

B= \left[ \begin{array}{ccc|c} b_{1} && 0 & \\ & \ddots & & 0 \\ 0 && b_{s} & \\ \hline & 0 & & 0 \end{array} \right]

其中 b_{i}\geq 1 并且 b_{1} \,|\, b_{2} \,|\, ... \,|\, b_{s} 

证明思路:从任意选取G和F的基开始,设A为这些基的矩阵,通过对A和行和列不断地进行矩阵的初等运算(交换两行、某一行乘以-1、或者某一行乘以整数q加到另一行上,列的运算也类似),以修改这些基,最终化为标准形

(14)自由链复形的标准基定理:如果 \left \{ C_{p}, \partial_{p} \right \} 是一个链复形,并且每个群 C_{p} (p\geq 0) 都是有限秩的自由Abel群,那么对每个 C_{p} (p\geq 0) 都存在直和分解 C_{p}=U_{p} \oplus Z_{p}=U_{p} \oplus V_{p} \oplus W_{p} ,其中 U_{p} 是一个p-1维弱边缘群的子群即 \partial_{p}(U_{p}) \subset W_{p-1} ,V_{p} 是p维闭链群的子群即 \partial_{p}(V_{p})=0 ,W_{p} 是p维弱边缘群。并且存在 U_{p} 和 W_{p-1} 的的基使得同态 \partial_{p}: U_{p} \to W_{p-1} 关于这些基有如下形式的矩阵

B= \left[ \begin{array}{ccc} b_{1} && 0 \\ & \ddots & \\ 0 && b_{s} \\ \end{array} \right]

其中 b_{i}\geq 1 并且 b_{1} \,|\, b_{2} \,|\, ... \,|\, b_{s} 。注意 W_{p} 和 Z_{p}=V_{p} \oplus W_{p} 是由 C_{p} 唯一确定的子群,但是子群 U_{p} 和 V_{p} 不是唯一确定的

(15)有限复形同调群的可计算性:一个有限复形K的同调群是可以有效计算的。由于存在分解 C_{p}(K)=U_{p} \oplus V_{p} \oplus W_{p} ,其中 Z_{p}=V_{p} \oplus W_{p} ,因此有 

H_{p}(K)=Z_{p}/B_{p} \cong V_{p} \oplus (W_{p} /B_{p}) \cong (Z_{p}/W_{p}) \oplus (W_{p}/B_{p})

群 Z_{p}/W_{p} 是自由Abel群,W_{p}/B_{p} 是挠群,归结为计算这两个群。

计算算法:考虑边缘同态 \partial_{p+1}: C_{p+1}(K) \to C_{p}(K) 的矩阵,这个矩阵的元素取集合 \left \{ 0,1,-1 \right \} 中的值。将该矩阵化为标准形,则 Z_{p+1} 的秩等于零列的列数, W_{p} 的秩等于非零行的行数,存在一个同构 W_{p}/B_{p} \cong Z/b_{1} \oplus Z/b_{2} \oplus ... \oplus Z/b_{s} ,其中 b_{i}\geq 1 并且 b_{1} \,|\, b_{2} \,|\, ... \,|\, b_{s} 。因此 \partial_{p+1} 的矩阵标准形给出K的p维挠系数 b_{1},...,b_{s} ,它们就是矩阵中那些大于1的元素。它也给出 W_{p} 的秩,而 \partial_{p}: C_{p}(K) \to C_{p-1}(K) 的矩阵标准形给出 Z_{p} 的秩,这样 rank(Z_{p}/W_{p}) = rank(Z_{p})-rank(W_{p}) ,得到K的p维Betti数

(16)链映射的性质:

如果 i: \mathcal{C} \to \mathcal{C}^{'} 是恒等链映射,那么 (i_{\ast})_{p}: H_{p}(\mathcal{C}) \to H_{p}(\mathcal{C}) 是恒等同态;

如果 f: \mathcal{C} \to \mathcal{C}^{'}, \, g: \mathcal{C}^{'} \to \mathcal{C}^{''} 都是链映射,那 g \circ f 也是链映射,并且 (g \circ f)_{\ast}=g_{\ast} \circ f_{\ast} ;

单纯链映射 f_{\sharp} 与边缘同态 \partial 可交换,即 \partial f_{\sharp}([v_{0},...,v_{p}])=f_{\sharp} \partial([v_{0},...,v_{p}]) ;

若 i: K \to K 是恒等单纯映射,那么 i_{\ast}: H_{p}(K) \to H_{p}(K) 是恒等同态;若 f: K \to L, \, g: L \to M 都是单纯映射,那么 (g \circ f)_{\ast}=g_{\ast} \circ f_{\ast} ,即下列图表交换

它说明单纯映射的p维诱导同态具有函子性质,即 H_{p} 是单纯复形范畴到Abel群范畴的一个函子;

单纯链映射 f_{\sharp} 保持增广同态 \varepsilon ,即对 \varepsilon_{K}: C_{0}(K) \to Z, \, \varepsilon_{L}: C_{0}(L) \to Z 有 \varepsilon_{L} \circ f_{\sharp}=\varepsilon_{K},它也诱导约化同调群的同态 f_{\ast}: \widetilde{H_{p}}(K) \to \widetilde{H_{p}}(L) 。

(17)链同伦的性质:

如果两个链映射 f,g: \mathcal{C} \to \mathcal{C}^{'} 是链同伦的,那么它们诱导的同态 f_{*}, g_{*} 是相等的,即它们诱导同一个同态;

如果 f 是一个链等价,且具有同伦逆 g ,那么 f_{\ast} 和 g_{\ast} 是互逆的同调同构;

如果单纯链映射 f_{\sharp} 和 g_{\sharp} 之间存在一个单纯链同伦,那么它们诱导的普通同调群或约化同调群的同态 f_{*}, g_{*} 都是相等的;

单纯链同伦的存在性:如果 f,g: K \to L 是相连接的单纯映射,那么f_{\sharp} 和 g_{\sharp} 之间就存在一个单纯链同伦;

在相对同调中的应用:链同伦的性质在相对同调的单纯映射上也成立。设 f,g: (K,K_{0}) \to (L,L_{0}) 是两个复形偶的单纯映射,并且是相连接的,那么对所有p均有同态 D: C_{p}(K,K_{0}) \to C_{p+1}(L,L_{0}) 使得 \partial D + D \partial = g_{\sharp}-f_{\sharp} ,这说明 f_{*}, g_{*} 作为相对同调群的同态是相等的

(18)零调承载子定理:设 \Phi: K \to L 是零调承载子,f,g: \mathcal{C}(K) \to \mathcal{C}(L) 是两个保持增广的链映射,如果 f 和 g 都是由 \Phi 承载的,那么 f, g 之间就存在一个链同伦D,并且D也由 \Phi 承载

(19)复形K上的锥 w \ast K 在有序同调中是零调的

 

同调群的拓扑不变性


(1)星形条件:设 h: \left | K \right | \to \left | L \right | 是一个连续映射,如果对复形K的每个顶点 v ,复形L都有一个顶点w 使得 h(St\, v)\subset St\,w ,就称 h 满足星形条件

(2)单纯逼近:设 h: \left | K \right | \to \left | L \right | 是一个连续映射,如果存在一个单纯映射 f: K \to L 使得对K的每个顶点 v ,h(St \, v) \subset St \, f(v) ,则把 f 称为 h 的一个单纯逼近;

性质:f 可以看作是按某种意义接近h,即给定 x \in \left | K \right | ,则有L的一个单形 \tau 使得 h(x) \in Int\, \tau 且 f(x) \in \tau 

(3)重分:设K是欧氏空间 E^{J} 中的一个复形,如果有一个复形L满足L的每个单形均包含在K的一个单形中,K的每个单形都是L的有限个单形的并,则L称为K的一个重分。这些条件蕴涵着 \left | K \right |, \, \left | L \right | 作为集合是相等的,作为拓扑空间也是相等的

(4)p+1维骨架的重分:设 L_{p} 是复形K的p维骨架的一个重分,\sigma 是K的一个p+1维单形,集合 Bd\,\sigma 是K的p维骨架的子复形,因此也是 L_{p} 的一个子复形。对内点 w_{\sigma} \in Int \, \sigma ,锥 w_{\sigma} \ast Bd \, \sigma 是一个底空间为 \sigma 的复形,定义

L_{p+1}=L_{p} \cup \left ( \bigcup_{\sigma \in K} w_{\sigma} \ast Bd\,\sigma \right )

其中 \sigma 遍历K的所有p+1维单形。则 L_{p+1} 是一个复形,称为从点 w_{\sigma} \in Int \, \sigma 作 L_{p} 上的星形而得到的 K^{(p+1)} 的重分

(5)重心:单形 \sigma=v_{0}...v_{p} 的重心定义为 

\hat{\sigma}=\sum_{i=0}^{p}\frac{1}{p+1}v_{i}

它是 Int \, \sigma 中的一点,并且到 \sigma 所有顶点的重心坐标都相等。一般地 \hat{\sigma} 是 \sigma 的形心,例如对1维单形 \hat{\sigma} 就是它的中点

(5)重心重分:定义复形K的骨架的一系列重分如下,令 L_{0}=K^{(0)} 是K的0维骨架,一般地设 L_{p} 是K的p维骨架的重分,那么定义 L_{p+1} 是从K的p+1维单形的重心作 L_{p} 上的星形而得到的p+1维骨架的重分,即

L_{p+1}=L_{p} \cup \left ( \bigcup_{\sigma \in K} \hat{\sigma} \ast Bd \, \sigma \right )

其中 \sigma 遍历K的所有p+1维单形,点 \hat{\sigma} 为 \sigma 的重心。所有维数骨架重分的并 \bigcup_{p=0}^{dimK}L_{p} 是K的一个重分,把它称为K的第一次重心重分,记作 sdK。复形sdK又能构造它的重心重分sd(sdK),记作 sd^{2}K ,这个复形称为K的第二次重心重分。一般地可以定义 sd^{n}K

(6)覆盖维数:若对空间X的每一个开覆盖A,都有一个加细的开覆盖B使得X中的任何点都不会在B的多于 m+1 个元中,满足这个条件的最小整数 m,称为X的覆盖维数。这也称X具有有限的覆盖维数

(7)保持子复形不动的重心重分:设 K_{0} 是复形K的子复形,定义K的骨架的一系列重分如下,令 J_{0}=K^{(0)} 是K的0维骨架,一般地,设 J_{p} 是K的p维骨架的一个重分,并且 K_{0} 的每个不超过p维的单形属于 J_{p} 。定义 J_{p+1} 是 J_{p} 和所有属于 K_{0} 的p+1维单形 \sigma ,以及 \sigma 遍历K的所有不在 K_{0} 中的p+1维单形时的锥 \hat{\sigma} \ast Bd \, \sigma 的并,即

J_{p+1}=J_{p} \cup \left ( \bigcup_{\sigma \in K_{0}}\sigma \right ) \cup \left ( \bigcup_{\sigma \in K \, \wedge \, \sigma \notin K_{0}} \hat{\sigma} \ast Bd \, \sigma \right )

所有维数骨架的重分的并 \bigcup_{p=0}^{dimK}J_{p} 是K的一个子复形,记作 sd(K/K_{0}) ,把它称为保持 K_{0} 不动的K的第一次重心重分。类似地,这个重分过程可以重复进行,复形 sd(sd(K/K_{0})/K_{0}) 称为保持 K_{0} 不动的K的第二次重心重分,记作 sd^{2}(K/K_{0}) 。一般地可以定义 sd^{n}(K/K_{0}) 

(8)广义重心重分:对复形K的每一个正维数的单形 \sigma ,定义函数 N(\sigma) 为一个非负整数。构造K的一个重分如下,令 L_{0}=K^{(0)} 是K的0维骨架,一般地设 L_{p} 是K的p维骨架的重分,对K的每个p+1维单形 \sigma ,Bd\,\sigma 是K的p维骨架的子复形,因此是 L_{p} 的一个子复形。保持 Bd\,\sigma 不动对锥 \hat{\sigma} \ast Bd\, \sigma 进行 N(\sigma) 次重心重分,得到 sd^{N(\sigma)}(\hat{\sigma} \ast Bd\, \sigma/Bd \, \sigma) 。定义 L_{p+1} 是所有这样的锥重分以及 L_{p} 的并,即

L_{p+1}=L_{p} \cup \left ( \bigcup_{\sigma \in K} sd^{N(\sigma)}(\hat{\sigma} \ast Bd\, \sigma/Bd \, \sigma) \right )

其中 \sigma 遍历K的所有p+1维单形,点 \hat{\sigma} 为 \sigma 的重心。L_{p+1} 是K的p+1维骨架的一个重分。所有维数骨架重分的并 \bigcup_{p=0}^{dimK}L_{p} 是K的一个重分,把它称为K关于函数 N(\sigma)广义重心重分

(9)重心重分算子:设sdK是K的首次重心重分,把重分算子记为 sd: C_{p}(K) \to C_{p}(sdK) ,称之为重心重分算子;

重心重分算子有归纳公式:sd(v)=v, \, sd(\sigma)=[\hat{\sigma}, sd(\partial \sigma)] 

(10)连续映射的诱导同态:对任意复形之间的连续映射 h: \left | K \right | \to \left | L \right | ,存在K的一个重分 K^{'} 使得 h 有一个单纯逼近 f: K^{'} \to L ,设 \lambda: \mathcal{C}(K) \to \mathcal{C}(K^{'}) 是重分算子,则 h 诱导同调群的同态 h_{\ast}: H_{p}(K) \to H_{p}(L) 定义为 h_{*}=f_{\ast} \circ \lambda_{\ast} ;

注意,如果 g: K^{'} \to K 是 \left | K \right | 到自身的恒等映射的一个单纯逼近,那么 \lambda_{\ast}, \, g_{\ast} 互逆,因此也可以定义为 h_{*}=f_{\ast} \circ (g_{\ast})^{-1} 

(11)同伦:设 f, g: X \to Y 是两个连续映射,I=[0,1] 是单位区间,如果存在一个连续映射 F: X \times I \to Y,满足对所有x都有 F(x,0)=f(x), \, F(x,1)=g(x),则映射F称为 f 和 g 之间的一个同伦,记作 f \simeq g。如果 g 是常值映射,则称 f 是零伦的。直观地说,同伦就是连续的形变,F可以看作是当t从0变到1时,f连续地变形到g;

直线同伦:从任一拓扑空间X到欧氏空间的凸子集的两个映射 f, g: X \to R^{n} 是同伦的。实际上 F(x,t)=(1-t)f(x)+tg(x) 就是f与g的一个同伦,这也称为直线同伦。当f和g是道路时,F也是一个道路同伦;

同伦等价:两个拓扑空间之间存在映射 f: X \to Y 和 g: Y \to X 满足 f \circ g\simeq id_{Y}, \, g \circ f \simeq id_{X},则称拓扑空间X和Y同伦等价,或者说它们有相同的伦型,记作 X \simeq Y 。也称f和g同伦等价,g是f的同伦逆。注意若把条件改为相等 f \circ g= id_{Y}, \, g \circ f = id_{X} 则为同胚

(12)收缩核:是具有特殊性质的子空间。设X是拓扑空间,A是X子空间,若存在连续映射 r: X \to A 使得当 x \in A 时,r(x)=x,则称A为X的收缩核,称映射 r 为X到A的一个收缩;

形变收缩核:是一类特殊的收缩核。若存在收缩映射 r: X \to A 和包含映射 i: A \to X (即对任意 a \in A 有 i(a)=a)使得 i \circ r \simeq id_{X},则称A为X的形变收缩核,同伦映射 H: X \times I \to A 称为X到A的形变收缩,它表示X可以连续地形变成A;

强形变收缩核:若同伦映射 H: X \times I \to A 是X到A的形变收缩,若对任意 x \in A, t \in I,有H(x, t)=x,则称A为X的强形变收缩核。直观地说,当形变过程中A的点都不变动时,A就是X的强形变收缩核;

可缩空间:与独点空间同伦等价的空间,即到自身的恒等映射是零伦的

(13)商映射:设X, Y为拓扑空间,若 f: X \to Y 是连续的满射,并且U是Y的开子集当且仅当 f^{-1}(U) 是X的开子集,则称 f 是一个商映射

(14)拓扑和:设空间E是不相交子空间 E_{\alpha} 之并,其中每个 E_{\alpha} 在E中是开的(闭的),则称E是各空间 E_{\alpha} 的拓扑和,写作 E=\sum E_{\alpha} 

(15)锥形:这里定义一般拓扑空间上的锥形。设X是拓扑空间,在积空间 X \times I 中定义关系 ~ 为,X \times \left \{ 1 \right \} 的点彼此等价,而 X \times (I-\left \{ 1 \right \}) 中的点只与自身等价,~ 是等价关系,由这一等价关系定义的商空间称为锥形,记作 CX=X \times I / \sim。直观地,CX是将 X \times I 中所有形如(x,1)的点捏成同一点得到的,这个点称为锥形的顶点。(x,t) \in X \times I 在锥形CX中的像记作 [x,t]

(16)球面映射的映射度:设 f: S^{n} \to S^{n} \, (n\geq 1) 是连续映射,f_{\ast}: H_{n}(S^{n}) \to H_{n}(S^{n}) 是诱导同态,如果 \alpha 是无限循环群 H_{n}(S^{n}) \cong Z 的两个生成元之一(注意Z有且只有两个生成元a与-a,例如1和-1),那么存在唯一的整数d使得 f_{\ast}(\alpha)=d\alpha ,整数d不依赖于生成元的选取,这是因为 f_{\ast}(-\alpha)=d(-\alpha) ,把整数d称为映射 f 的度,记作 deg(f) ;

映射度的简单性质:

恒等映射的度是1,即 deg(id_{S^{n}})=1

如果 f 能扩张成一个连续映射 g:B^{n+1} \to S^{n} ,那么 deg(f)=0;

如果 f \simeq h ,那么 deg(f)=deg(h);

deg(f \circ h)=deg(f) \cdot deg(h) 

(17)对径映射:映射 a: S^{n} \to S^{n} \, (n\geq 1) 定义为对所有点x,a(x)=-x ,这个映射称为对径映射

(18)切向量场:设 X: S^{n} \to E^{n+1} 是一个连续映射,使得对任意球面上的点 v \in S^{n} 与向量 X(v) 垂直,则称 X(v) 是点v处一个切向量,X是 S^{n} 上的切向量场。如果对每个点 v \in S^{n} ,X(v)\neq 0 ,则X称非零切向量场

(19)自由Abel群同态的迹:设G和F是秩为n,以 a_{1},...,a_{n} 为基自由Abel群,同态 \phi : G \to G 的矩阵A的迹 trA,即为 \phi 的迹,记作 tr \phi 。tr \phi 的值不依赖于基的选取,因为 \phi 关于另一个基的矩阵为 B^{-1}AB ,其中B为某个方阵,而 tr(B^{-1}(AB))=tr((AB)B^{-1})=trA ;

链映射的迹:对有限复形K上的链映射 \phi : C_{p}(K) \to C_{p}(K) ,由于 C_{p}(K) 是有限秩的自由Abel群,因而 \phi 的迹是有定义的,记作 tr(\phi, C_{p}(K)) ;

链映射诱导同态的迹:对有限复形K,同调群 H_{p}(K) 未必是自由Abel群,但如果 T_{p}(K) 是它的挠子群,那么群 H_{p}(K)/T_{p}(K) 一定是自由Abel群。设链映射 \phi : C_{p}(K) \to C_{p}(K)  的诱导同态为 \phi_{\ast}: H_{p}(K)/T_{p}(K) \to H_{p}(K)/T_{p}(K) ,这个诱导同态的迹记作 tr(\phi_{\ast}, H_{p}(K)/T_{p}(K)) 

(20)Euler示性数:有限复形K的Euler示性数定义为

 \chi(K)=\sum_{p=0}^{\infty}(-1)^{p} \, rank(C_{p}(K))

即K的各个维数单形个数(即单纯链群的秩)的交错和;

拓扑空间的Euler示性数:如果拓扑空间X有一个三角剖分 h: \left | K \right | \to X ,则X的Euler示性数定义为剖分复形K的Euler示性数;

流形的Euler示性数:定义为和它同胚的一个复形的Euler示性数

例子:

对球面 \chi(S^{2})=2 ;平面的Euler示性数为2;实心球和圆盘的Euler示性数为1;圆周和环面的Euler示性数为0

(21)Lefschetz数:对有限复形K上的连续映射 h: \left | K \right | \to \left | K \right | ,将数

\Lambda(h)=\sum_{p}(-1)^{p} \, tr(h_{\ast}, H_{p}(K)/T_{p}(K))

称为 h 的Lefschetz数

(22)2维拓扑多面体:是 R^{3} 中有限个多边形的族,其中每两个多边形至多相交于一条公共边或一个公共点,这样构成的复形可剖空间B称为2维拓扑多面体,每个多边形称为B的一个面,其顶点称为B的顶点,相交的公共边称为B的边。由于每个多边形是2维的,因而B是2维的;

组合正则多面体:如果2维多面体B的所有面都具有同样多的边数(n边形),每条边恰好属于两个面,每个顶点处有同样多的边数(m条边),则称该多面体是组合正则的;

正多面体:同胚于球面 S^{2} 的组合正则多面体称为正多面体

 

主要定理:

(1)单纯逼近的复合:若 h: \left | K \right | \to \left | L \right | 有单纯逼近 f: K \to L ,k: \left | L \right | \to \left | M \right | 有单纯逼近 g: L \to M ,那么 g \circ f 是 k \circ h 的单纯逼近

(2)重分的性质:若 K^{'} 是K的一个重分,那么对 K^{'} 的每个顶点w,都有K的一个顶点v使得 St(w,K^{'}) \subset St(v,K) 

(3)复形 sdK 等于所有形如 \hat{\sigma_{1}}\hat{\sigma_{2}}...\hat{\sigma_{n}} 的单形的集合,其中 \sigma_{1} \succ \sigma_{2} \succ ... \succ \sigma_{n} 。记号 \sigma_{1} \succ \sigma_{2} 表示 \sigma_{2} 是 \sigma_{1} 的一个真面

(4)重心重分的性质:若K是一个带度量的有限复形,对任意 \epsilon>0 ,存在一个 n 使得 sd^{n}K 中的每个单形的直径都小于 \epsilon 

这个定理说明有限复形可以重心重分成一系列无限小的单形

(5)有限复形的覆盖维数:m维有限复形的覆盖维数恰好是m

(6)有限单纯逼近定理:对K为有限复形的连续映射 h: \left | K \right | \to \left | L \right | ,存在一个 n 使得 h 有一个单纯逼近 f: sd^{n}K \to L

(7)一般单纯逼近定理:对任意复形之间的连续映射 h: \left | K \right | \to \left | L \right | ,存在K的一个重分 K^{'} 使得 h 有一个单纯逼近 f: K^{'} \to L

(8)若 K^{'} 是K的一个重分,那么恒等映射 i: \left | K \right | \to \left | K \right | 有一个单纯逼近 g: K^{'} \to K ,并且对单形 \tau \in K^{'}, \, \sigma \in K ,若 \tau \subset \sigma ,则 g(\tau) \subset \sigma 

(9)代数重分定理:设 K^{'} 是K的一个重分,存在唯一的一个保持增广的链映射 \lambda: \mathcal{C}(K) \to \mathcal{C}(K^{'}) ,使得对每个 \sigma ,\lambda(\sigma) 均由 K^{'}(\sigma) (表示可剖空间是 \sigma 的 K^{'} 的子复形)承载。如果 g: K^{'} \to K 是恒等映射的一个单纯逼近,那么 \lambda, g_{\sharp} 是链同伦等价的,因而诱导同态 \lambda_{\ast}, \, g_{\ast} 是同构的。\lambda 称为重分算子

在相对同调中的应用:上述定理在相对同调中也成立。设 K_{0} 是复形K的子复形,设 K^{'} 是K的一个重分,K_{0}^{'} 是 K_{0} 的诱导重分。那么重分算子 \lambda 诱导一个链映射 \lambda: \mathcal{C}(K,K_{0}) \to \mathcal{C}(K^{'},K_{0}^{'}) 。如果 g: (K^{'},K_{0}^{'}) \to (K,K_{0}) 是恒等映射的一个单纯逼近,那么 \lambda, g_{\sharp} 是链同伦等价的

(10)诱导同态的函子性质:恒等映射 i: \left | K \right | \to \left | K \right | 诱导恒等同态 i_{\ast}: H_{p}(K) \to H_{p}(K) 。如果 h: \left | K \right | \to \left | L \right |, \, k: \left | L \right | \to \left | M \right | 都是连续映射,那么 (k \circ h)_{\ast}=k_{\ast} \circ h_{\ast} ,同样的结果对约化同调群也成立;

在相对同调中也成立:如果 h: (\left | K \right |,\left | K_{0} \right |) \to (\left | L \right |,\left | L_{0} \right |), \, k: (\left | L \right |,\left | L_{0} \right |) \to (\left | M \right |,\left | M_{0} \right |) 都是连续映射,那么在相对同调中有 (k \circ h)_{\ast}=k_{\ast} \circ h_{\ast} 

(11)单纯同调群的拓扑不变性:如果复形之间的连续映射 h: \left | K \right | \to \left | L \right | 是一个同胚,那么诱导同态 h_{\ast}: H_{p}(K) \to H_{p}(L) 就是一个同构,同样的结果对约化同调群也成立;

在相对同调中也成立:如果 h: (\left | K \right |,\left | K_{0} \right |) \to (\left | L \right |,\left | L_{0} \right |) 是同胚,那么诱导同态 h_{\ast}: H_{p}(K,K_{0}) \to H_{p}(L,L_{0}) 是一个同构

(12)复形之间同伦的性质:

若K是复形,I=[0,1] 是单位区间,那么积空间 \left | K \right | \times I 的拓扑关于子空间 \sigma \times I \, (\sigma \in K) 是凝聚的,并且 \left | K \right | \times I 是一个多面体,即它是复形 K \times I 的可剖空间;

如果 h,k: \left | K \right | \to \left | L \right | 是同伦的,那么 h_{\ast},k_{\ast}: H_{p}(K) \to H_{p}(L) 相等,同样的结果对约化同调群也成立。同样的结果在相对同调中也成立;

如果 f: K \to L 是连续映射 h: \left | K \right | \to \left | L \right | 的一个单纯逼近,那么 f 同伦于 h;

(13)单纯同调群的同伦不变性:如果复形之间的连续映射 h: \left | K \right | \to \left | L \right | 是一个同伦等价,那么诱导同态 h_{\ast}: H_{p}(K) \to H_{p}(L) 就是一个同构。由此可知,复形的p维Betti数和挠系数也是同伦不变量

(14)单位球面 S^{n-1} 是穿孔欧氏空间 R^{n}-0 的形变收缩核,因而当 m\neq n 时,R^{m} 与 R^{n} 不同胚

(15)形变收缩的性质:

如果A是拓扑空间X的形变收缩核,则A与X同伦等价;

空间X是可缩空间的充要条件是X的任意一点是它的形变收缩核;由此可缩空间都是道路连通的;

任何凸集都是可缩空间;

锥形的顶点是它的强形变收缩核,从而锥形是可缩的;

如果 \left | K \right | 是可缩的,那么复形K的零调的。

(16)Fuchs定理:两个空间X和Y同伦等价当且仅当存在一个空间Z和两个嵌入映射 h: X \to Z, \, k: Y \to Z ,使得h(X), k(Y) 都是Z的形变收缩核。 也就是当且仅当X,Y分别同胚于同一个空间Z的两个形变收缩核

(17)商映射的分离性质:

如果 p: X \to Y 是一个商映射,C是一个局部紧致的Hausdorff空间,那么 p \times i_{C}: X \times C \to Y \times C 是一个商映射;

如果 p: A \to B, \, q: C \to D 都是商映射,A和D都是局部紧致的Hausdorff空间,那么 p \times q: A \times C \to B \times D 是商映射;

如果X的拓扑关于子空间 X_{\alpha} 是凝聚的,Y是局部紧的Hausdorff空间,那么 X \times Y 的拓扑关于子空间 X_{\alpha} \times Y是凝聚的。特别地,\left | K \right | \times I 的拓扑关于子空间 \sigma \times I (\sigma \in K) 是凝聚的;

设 w \ast K 是复形K上的一个锥,那么由 \pi(x,t)=(1-t)x+tw 定义的映射 \pi: \left | K \right | \times I \to \left | w \ast K \right | 是一个商映射,它把 \left | K \right | \times 1 坍缩到一点 w ,而在其他情况下则是一对一的。

(18)非收缩定理:对每一个n,不存在收缩映射 r: B^{n+1} \to S^{n} 

(19)Brouwer不动点定理:每一个连续映射 f: B^{n} \to B^{n} 至少有一个不动点。可推广到凸紧集上,即每个欧氏空间中的凸紧子集到自身的连续映射至少有一个不动点;

Schauder不动点定理:这是更一般的推广。每个巴拿赫空间中的凸紧子集到自身的连续映射至少有一个不动点

(20)球面映射度的性质:

Hopf定理:两个球面映射 f,g: S^{n} \to S^{n} 是同伦的,当且仅当它们的映射度相等 deg(f)=deg(g) ;

S^{n} 的对径映射 a: S^{n} \to S^{n} 的映射度是 (-1)^{n+1} ;

如果 h: S^{n} \to S^{n} 的映射度不等于 (-1)^{n+1} ,那么h至少有一个不动点;

如果 h: S^{n} \to S^{n} 的映射度不等于1,那么存在一点 x \in S^{n} 使得 h(x)=-x,即h把点x映射到它的对径点-x ;

当且仅当n为奇数时,S^{n} 有非零切向量场;

对任意一个奇数n,记 n+1=2^{4a+b}(2k+1), \, a,b,k \in Z_{+}, 0\leq b \leq 3 ,那么在球面 S^{n} 上有且最多有 8a+2^{b}-1 个线性无关的切向量场

(23)Hopf迹数定理:若 \phi : C_{p}(K) \to C_{p}(K) 是有限复形K上的链映射,那么

\sum_{p=0}^{\infty}(-1)^{p} \, tr(\phi, C_{p}(K))=\sum_{p=0}^{\infty}(-1)^{p} \, tr(\phi_{\ast}, H_{p}(K)/T_{p}(K))

(24)Euler示性数的同伦不变性:\beta_{p}=rank(H_{p}(K)/T_{p}(K)) 是有限复形K的p维Betti数,那么

\chi(K)=\sum_{p=0}^{\infty}(-1)^{p} \beta_{p}

可见Euler示性数是同伦不变量,因此也是拓扑不变量

(24)Lefschetz不动点定理:对有限复形K上的连续映射 h: \left | K \right | \to \left | K \right | ,如果Lefschetz数 \Lambda(h) \neq 0 ,那么 h 必有不动点

(25)对有限复形K上的连续映射 h: \left | K \right | \to \left | K \right | ,如果 \left | K \right | 是零调的,那么 h 必有不动点

(26)对 R^{n} 中的紧致光滑曲面M,如果M有非零切向量场,那么Euler示性数 \chi(M)=0 

(27)2维拓扑多面体的Euler示性数:对2维拓扑多面体B,\chi(B)=F-E+V ,其中F, E, V 分别是面、边、顶点的个数

(28)Euler公式:对和球面 S^{2} 同胚的任意2维多面体B,有 \chi(B)=\chi(S^{2})=F-E+V=2 。特别地,只有五种正多面体,即正4面体、正6面体、正8面体、正12面体、正20面体

 

相对同调群和Eilenberg-Steenrod公理


(1)正合序列:Abel范畴(例如Abel群或模的范畴)中的一列对象及其间的态射所组成的有限或无限序列,该序列中的每一个态射的像都恰好是其下一个态射的核。即态射系列

... \overset{f_{n-1}}{\rightarrow} A_{n-1} \overset{f_{n}}{\rightarrow} A_{n} \overset{f_{n+1}}{\rightarrow} A_{n+1} \to \, ...

如果满足 im(f_{n})=ker(f_{n+1}) ,则称该序列在 A_{n} 处正合。如果该序列的每处都正合,则称为正合序列。群对象的指标集为整数集的双向无限的正合序列,称为长正合序列;

连通序列:如果对每个 n 有 f_{n}f_{n-1}=0 ,则该序列为连通序列。正合序列一定是连通序列,但反过来不一定成立

(2)短正合序列:具有下列形式的正合序列 0 \to A \overset{f}{\rightarrow} B \overset{g}{\rightarrow} C \to 0 ,称为短正合序列。有时B也称为C经由A的扩张;

性质:根据Abel范畴的性质,对任何一个短正合序列,f 一定为单射,且g 一定为满射,且f 的像会等于g 的核 im(f)=ker(g),因此诱导出一个同构 C \cong B/im(f) 

(3)序列的同态:设有两个序列

... \to A_{n-1} \to A_{n} \to A_{n+1} \to \, ...

... \to B_{n-1} \to B_{n} \to B_{n+1} \to \, ...

这两个序列间的同态是一族同态 \alpha_{i}: A_{i} \to B_{i} ,使得由映射组成的每个方形图表

都是交换的。当每个 \alpha_{i} 是同构时,序列的同态成为序列的同构

例子:两个链复形序列的同态就是一个链映射

(4)正合序列的分裂:对短正合序列 0 \to A \overset{f}{\rightarrow} B \overset{g}{\rightarrow} C \to 0 ,若满足分裂引理的条件,则称这个序列是分裂的

(5)联系同态(边界映射):对于相对同调,由相对链群的边缘算子 \partial_{p}: C_{p}(K, K_{0}) \to C_{p-1}(K, K_{0}) 诱导的同态 \partial_{\ast}: H_{p}(K,K_{0}) \to H_{p-1}(K_{0}) ,称为联系同态。其中 H_{p-1}(K_{0}) 是 H_{p-1}(K_{0}, \varnothing) 的简写

(6)链复形的短正合序列:对链复形 \mathcal{C}=\left \{ C_{p}, \partial_{C} \right \}, \, \mathcal{D}=\left \{ D_{p}, \partial_{D} \right \}, \, \mathcal{E}=\left \{ E_{p}, \partial_{E} \right \} 和链映射 f: \mathcal{C} \to \mathcal{D}, \, g: \mathcal{D} \to \mathcal{E} ,如果对每一个维数 p ,序列 0 \to C_{p} \overset{f}{\rightarrow} D_{p} \overset{g}{\rightarrow} E_{p} \to 0 都是群的正合序列,则称序列 0 \to \mathcal{C} \overset{f}{\rightarrow} \mathcal{D} \overset{g}{\rightarrow} \mathcal{E} \to 0 是链复形的短正合序列

(7)正合函子:设 \mathcal{C}, \mathcal{D} 是Abel范畴,T: \mathcal{C} \to \mathcal{D} 是加法函子,如果T保持正合序列,即对每个 \mathcal{C} 上的正合序列

... \overset{f_{n-1}}{\rightarrow} A_{n-1} \overset{f_{n}}{\rightarrow} A_{n} \overset{f_{n+1}}{\rightarrow} A_{n+1} \to \, ...

取T的像得到 \mathcal{D} 上的序列

... \overset{T(f_{n-1})}{\rightarrow} T(A_{n-1}) \overset{T(f_{n})}{\rightarrow} T(A_{n}) \overset{T(f_{n+1})}{\rightarrow} T(A_{n+1}) \to \, ...

仍为正合序列,则称T为正合函子。

此外,若短正合序列 0 \to A \overset{f}{\rightarrow} B \overset{g}{\rightarrow} C \to 0 取T的像并截去尾端零对象后的序列 0 \to T(A) \overset{T(f)}{\rightarrow} T(B) \overset{T(g)}{\rightarrow} T(C)  仍是正合序列,则称T为左正合函子。类似地,若 T(A) \overset{T(f)}{\rightarrow} T(B) \overset{T(g)}{\rightarrow} T(C) \to 0 仍是正合序列,则称T为右正合函子。正合性等价于左正合性+右正合性

(8)拓扑空间偶范畴(容许空间类):设 \mathcal{A} 是拓扑空间偶 (X, A) 的集合,满足如果 (X, A) 属于 \mathcal{A} ,那么偶 (X, X), (X, ∅), (A, A), (A, ∅) 和 (X \times I, A \times I) 也都属于 \mathcal{A} ;有一个单点空间P使得 (P, ∅) 属于 \mathcal{A} ,则把 \mathcal{A} 称为同调论的一个容许空间类,以空间偶 (X, A) 为对象,空间偶之间的连续映射 h: (X, A) \to (Y, B) 为态射,则 \mathcal{A} 也称为拓扑空间偶范畴

紧致空间偶:把X和A均为紧致的空间偶 (X, A) 称为紧致空间偶

(9)切除对:设 X=X_{1} \cup X_{2} ,如果拓扑空间偶的包含映射 i: (X_{1},X_{1} \cap X_{2}) \to (X,X_{2}) 诱导同调的同构 H_{n}(X_{1},X_{1} \cap X_{2}) \cong H_{n}(X,X_{2}) ,则称 \left \{ X_{1},X_{2} \right \} 是这个同调论的一个切除对,(X,X_{1},X_{2}) 称为正合三元组

(10)可三角剖分的拓扑空间偶:设A是拓扑空间X的子空间,对空间偶 (X, A),如果存在一个复形K和K的子复形 K_{0} ,以及一个同胚 h: (\left | K \right |,\left | K_{0} \right |) \to (X,A) ,则称 (X, A) 是一个可三角剖分偶(\left | K \right |,\left | K_{0} \right |) 是它的一个三角剖分。如果A是空集,则称X是一个可三角剖分空间;

可三角剖分偶范畴:对象是可三角剖分偶 (X, A),态射是可三角剖分偶之间的连续映射 h: (X, A) \to (Y, B) 

(11)范畴:一个范畴C,包括对象类Ob(C),态射类 Hom_{C}(A, B) ,表示Ob(C)中的所有对象间的态射构成的类,满足

态射复合性: Hom_{C}(Y,Z) \times Hom_{C}(X,Y) \to Hom_{C}(X,Z) 是复合,记作 (f,g) \mapsto f \circ g,简记为fg ;

态射结合律:f(gh)=(fg)h ;

存在单位态射(恒等态射):对任意 X,Y \in Ob(C),存在单位元 1_{X} \in Hom_{C}(X,X), \, 1_{Y} \in Hom_{C}(Y,Y),使得对任意 f \in Hom_{C}(X,Y) 满足 f \circ 1_{X}=f=1_{Y} \circ f 。注意恒等态射 1_{X} 若存在则是唯一的。

注意范畴是比集合抽象层次更高的数学结构。

(12)代数拓扑中的常见范畴:

Top:拓扑空间范畴,拓扑空间与连续映射;

Man:拓扑流形范畴,拓扑流形与连续映射;

hTop:拓扑同伦范畴,拓扑范畴中的连续映射之间的同伦关系是一个等价关系,由此得到商范畴 Top/~,称为拓扑同伦范畴,对象是拓扑空间X,态射是映射的同伦类 [f]: X \to Y

复形范畴:单纯复形和单纯映射;

复形可剖空间范畴:单纯复形的可剖空间,以及它们之间的连续映射;

复形同伦范畴:对象是单纯复形K,态射是连续映射的同伦类 [f]: K \to L

链复形范畴:链复形和链映射;

增广链复形范畴:增广链复形和它们之间的链映射;

链同伦范畴:对象是链复形,态射是链同伦类 [f]: \mathcal{C} \to \mathcal{C}^{'} ;

Abel群短正合序列范畴:Abel群的短正合序列,和这种序列的同态。对长正合序列也有相应的范畴;

链复形短正合序列范畴:链复形的短正合序列,和这种序列的同态;

拓扑空间偶范畴:拓扑空间偶 (X, A) ,和空间偶之间的连续映射 (f, g) ,可简记为 h: (X, A) \to (Y, B) ;

可三角剖分偶范畴:对象是可三角剖分偶 (X, A),态射是可三角剖分偶之间的连续映射 h: (X, A) \to (Y, B) 。

(13)函子:是范畴间保持结构的映射,可理解为范畴间的同态。一个从范畴 \mathcal{C} 到范畴 \mathcal{D} 的函子 F: \mathcal{C} \to \mathcal{D} 由如下信息给出:

把对象映为对象: X \in \mathcal{C} \Rightarrow F(X) \in \mathcal{D} ;

把态射映为态射:f: X \to Y \in \mathcal{C} \Rightarrow F(f): F(X) \to F(Y) \in \mathcal{D} ;

保持态射的复合性:f,g \in Hom(\mathcal{C}) \Rightarrow F(g \circ f)=F(g) \circ F(f) ;

保持单位态射(恒等态射):F(1_{X})=1_{F(X)} 。

因为态射是协变(共变)的,这样的函子也叫协变函子

反变函子:把协变函子定义中的第2条态射箭头反过来,即 f: X \to Y \in \mathcal{C} \Rightarrow F(f): F(Y) \to F(X) \in \mathcal{D} ,则F称为反变函子。也可以将反变函子定义为在对偶范畴 \mathcal{C}^{op} 上的协变函子。

(14)代数拓扑中的一些函子:

几何实现函子:从抽象复形到几何复形的一个函子;

链复形函子:复形范畴到链复形范畴的函子,将复形K映为链复形 \mathcal{C}(K) ,将单纯映射 f: K \to L 映为链映射 f_{\sharp}: C_{p}(K) \to C_{p}(L) ;

同调函子:拓扑同伦范畴到Abel群范畴的函子,将拓扑空间X映为同调群 H_{p}(X) ,将连续映射的同伦类 [f]: X \to Y 映为同调群的同态 f_{*}: H_{p}(X) \to H_{p}(Y) ,这就定义了一种同调论;

正合同调函子:链复形短正合序列范畴到长正合同调序列范畴的函子,由之字形引理可知,每个链复形短正合序列诱导一个长正合同调序列,并且短正合序列的同态诱导长正合同调序列的同态,之字形引理的函子性恰好说明这是一个函子;

直和函子:Abel群族到Abel群的函子,对Abel群族中的各个群进行直和运算。类似地还有直积函子;

Abel化函子:通过群G的换位子群 [G, G],将群G Abel化,这就定义了一个函子 G \to G/[G,G] ,它是群范畴到Abel群范畴的函子;

Stone-Cech紧致化函子:从完全正则空间到紧致Hausdorff空间的函子,每个完全正则空间X都可以通过Stone-Cech紧致化,变为一个紧致的Hausdorff空间,记作 \beta(X) 

(15)自然变换:是将一个函子变为另一个函子,使相关范畴的内在结构(就是态射间的复合)得以保持,因此可以将自然变换视为函子间的映射。对两个平行函子 F,G: \mathcal{C} \to \mathcal{D} ,一个从FG 的自然变换 \eta: F \to G,表示对 \mathcal{C} 中每个对象,给出一个在 \mathcal{D} 的对象间的态射 \eta_{X} : F(X) \to G(X),称为η在X处的分量,使得对 \mathcal{C} 中每个态射 f: X \to Y 都有 \eta_{Y} \circ F(f)=G(f) \circ \eta_{X} ,该式可表达为交换图:

FG 的自然变换 η ,也可表达为态射族 \eta_{X} : F(X) \to G(X)X中是自然的。自然变换也可记为 \eta: F \Rightarrow G,注意如果FG都是反变函子,将上述交换图表中的水平箭号方向反转。

若对 \mathcal{C} 中每个对象X,自然变换的分量即态射 \eta_{X} 是 \mathcal{D} 中的同构 F(X)\cong G(X),则称 η 为自然同构,并称函子F和G是自然同构的,记作 F \cong G

自然变换本质上是指一系列来源不同的箭头(一个来源于F,另一个来源于G),每对箭头确保图可交换,即箭头间的复合仍然得以保持,这就是"自然性"的体现。

例子:

联系同态 \partial_{\ast}: H_{p}(X,A) \to H_{p-1}(A, \varnothing) 就是同调函子 H_{p} 到同调函子 H_{p-1} 的一个自然变换

 

主要定理:

(1)分裂引理:在任意Abel范畴中,给定一个具有映射q 与r 的短正合序列 0 \to A \overset{q}{\rightarrow} B \overset{r}{\rightarrow} C \to 0 ,则下列陈述等价:

左分裂:q有回缩,即存在映射 B\overset{t}{\rightarrow} A 使得 tq 是A的恒等映射 1_{A} ;

右分裂:r有截面,即存在映射 C\overset{u}{\rightarrow} B 使得 ru 是C的恒等映射 1_{C} ;

直和:B同构于A和C的直和 A \oplus C ,并且q是A的自然内射,r是到C的投影。

如果上述任一条件成立,则称短正合序列为分裂的

(2)对短正合序列 0 \to A \overset{q}{\rightarrow} B \overset{r}{\rightarrow} C \to 0 ,如果C是自由Abel群,则这个序列是分裂的

(3)正合序列的可分解性:任意长正合序列可以分解为短正合序列。长正合序列可以透过核Ker与上核Coker的构造分解为短正合序列,构造方式如下:考虑一正合序列

... \overset{f_{n-1}}{\rightarrow} A_{n-1} \overset{f_{n}}{\rightarrow} A_{n} \overset{f_{n+1}}{\rightarrow} A_{n+1} \to \, ...

设 Z_{n}=Ker(f_{n+1})=Im(f_{n})=Coker(f_{n-1}) ,其中 2\leq n\leq 4 ,这就给出了一个短正合序列

0 \to Z_{n} \to A_{n} \to Z_{n+1} \to 0

(4)蛇引理:对Abel范畴(例如Abel群或模的范畴)中的任意行正合的交换图表

即每一行都是正合序列,那么存在态射 d:ker\,c \to coker\,a ,使得联系a, b, c的核与上核的序列

是正合序列。此外,若 f 是单射,则 ker\,a \to ker\,b 亦然;若 g 是满射,则 coker\,b \to coker\,c 亦然。

在同调代数中,蛇形引理是通过短正合序列构造长正合序列的关键工具,依此构造的同态通常称作联系同态。上述构造出来的长正合序列可以通过下图中的"蛇形"来说明:

(5)蛇引理的函子性(自然性):对Abel范畴中的任意行正合的交换图表

利用蛇引理两次,一次在“前”一次在“后”,则产生两条长正合序列,它们满足以下交换图

可见蛇引理构造的不同长正合序列具有函子性,或者说自然性(自然变换的意思)

(6)五引理:对Abel范畴或群范畴中的任意行正合的交换图表

如果 l 是满射 q 是单射,m, p 是同构,那么 n 是同构。注意五引理不只对Abel范畴成立,对群范畴也成立。

证明思路:使用图追踪法

(7)短五引理:五引理对短正合序列的特例。对Abel范畴或群范畴中的任意行正合的交换图表

如果 \alpha, \gamma 都为单态,那么 \beta 也为单态;如果 \alpha, \gamma 都为满态,那么 \beta 也为满态;如果 \alpha, \gamma 都为同构,那么 \beta 也为同构。注意短五引理不只对Abel范畴成立,对群范畴也成立。

证明思路:使用五引理,也可以使用蛇引理

(8)九引理:对Abel范畴中的任意交换图表

如果所有列和底下两行是正合的,则顶上一行也是正合的。如果所有列和顶上两行是正合的,则底下一行也是正合的。由于图表关于对角线是对称的,把行和列互换后结论仍然成立。

类似地,有十六引理、二十五引理,等等。

证明思路:用图追踪法,或者套用蛇引理

(9)之字形引理(Zig-zag Lemma):对一般的链复形 \mathcal{C}=\left \{ C_{p}, \partial_{C} \right \}, \, \mathcal{D}=\left \{ D_{p}, \partial_{D} \right \}, \, \mathcal{E}=\left \{ E_{p}, \partial_{E} \right \} ,若序列 0 \to \mathcal{C} \overset{f}{\rightarrow} \mathcal{D} \overset{g}{\rightarrow} \mathcal{E} \to 0 是链复形的短正合序列,则存在一个链复形的长正合同调序列

... \to H_{p}(\mathcal{C}) \overset{f_{*}}{\rightarrow} H_{p}(\mathcal{D}) \overset{g_{\ast}}{\rightarrow} H_{p}(\mathcal{E}) \overset{\partial_{\ast}}{\rightarrow} H_{p-1}(\mathcal{C}) \overset{f_{\ast}}{\rightarrow} H_{p-1}(\mathcal{D}) \to ...

其中 f_{\ast}, g_{\ast} 是链映射 f: \mathcal{C} \to \mathcal{D}, \, g: \mathcal{D} \to \mathcal{E} 的诱导同态,而联系同态 \partial_{\ast} 是由 \mathcal{D} 中的边缘算子 \partial_{D} 诱导的。

一般地,设 \mathcal{A}=\left \{ A_{n}, \partial_{\bullet} \right \}, \, \mathcal{B}=\left \{ B_{n}, \partial_{\bullet}^{'} \right \}, \, \mathcal{C}=\left \{ C_{n}, \partial_{\bullet}^{''} \right \} 是三个链复形,满足 0 \to \mathcal{A} \overset{f}{\rightarrow} \mathcal{B} \overset{g}{\rightarrow} \mathcal{C} \to 0 是短正合序列,下面的交换图

每行是都是正合的,每列都是链复形,那么存在一族同调群的联系同态 \delta_{n}:H_{n}(\mathcal{C}) \to H_{n-1}(\mathcal{A}) ,使得下面的序列是长正合同调序列

其中 \alpha_{\ast}, \beta_{\ast} 是由链映射 \alpha_{n}, \beta_{n} 诱导的同态。

之字形引理是对链复形的每个短正合序列,可以导出它的同调群的一个长正合序列,这是计算同调群的一种有效方法。引理适用于一般的链复形,并没有限定它是自由的或非负的,因此并不只限于单纯同调群的应用

证明思路:使用图追踪法,或直接套用蛇引理。实际上蛇引理是之字形引理的变体版本

(10)复形偶的正合同调序列:之字形引理在相对同调中的特例。若 K_{0} 是复形K的子复形,那么存在一个长正合同调序列

... \to H_{p}(K_{0}) \overset{i_{*}}{\rightarrow} H_{p}(K) \overset{\pi_{\ast}}{\rightarrow} H_{p}(K,K_{0}) \overset{\partial_{\ast}}{\rightarrow} H_{p-1}(K_{0}) \to ...

其中 i_{\ast}, \, \pi_{\ast} 分别是由包含映射 i: K_{0} \to K 和 \pi: (K, \varnothing) \to (K, K_{0}) 诱导的同态,而 \partial_{\ast} 是由边缘算子 \partial_{p}: C_{p}(K, K_{0}) \to C_{p-1}(K, K_{0}) 诱导的联系同态。在约化同调中也有类似的长正合同调序列

... \to \widetilde{H}_{p}(K_{0}) \overset{i_{*}}{\rightarrow} \widetilde{H}_{p}(K) \overset{\pi_{\ast}}{\rightarrow} \widetilde{H}_{p}(K,K_{0}) \overset{\partial_{\ast}}{\rightarrow} \widetilde{H}_{p-1}(K_{0}) \to ...

证明思路:将之字形引理应用于单纯链群或相对链群链复形 \mathcal{C}(K_{0}), \mathcal{C}(K), \mathcal{C}(K,K_{0}) 的短正合序列,其中的链映射诱导出同调群的同态,最终得到同调序列

(11)之字形引理的函子性(自然性):对链复形范畴中的任意行正合的交换图表

其中 \alpha, \beta, \gamma 是链映射,利用之字形引理两次,一次在“前”一次在“后”,则产生两条长正合同调序列,它们满足以下交换图

可见之字形引理构造的不同长正合同调序列具有函子性,或者说自然性

(12)正合同调序列的同态:如果 h: (K,K_{0}) \to (L,L_{0}) 是复形偶之间的一个单纯映射,那么诱导同态 h_{\ast}: H_{p}(K,K_{0}) \to H_{p}(L,L_{0}) 给出 (K,K_{0}) 的正合同调序列到 (L,L_{0}) 的正合同调序列的一个同态;如果对 i=p 和 i=p-1 ,h_{\ast}:H_{i}(K) \to H_{i}(L) 和 h_{\ast}:H_{i}(K_{0}) \to H_{i}(L_{0}) 都是同构,那么 h_{\ast}: H_{p}(K,K_{0}) \to H_{p}(L,L_{0}) 也是同构。这两个结果对约化同调也成立,对一般的连续映射 h: (\left | K \right |,\left | K_{0} \right |) \to (\left | L \right |,\left | L_{0} \right |) 也成立

(13)Mayer-Vietoris序列:设K是一个复形,若 K_{0},K_{1} 是它的子复形并且 K=K_{0} \cup K_{1} ,A=K_{0} \cap K_{1} ,那么就有一个同调正合序列

... \to H_{p}(A) \to H_{p}(K_{0}) \oplus H_{p}(K_{1}) \to H_{p}(K) \to H_{p-1}(A) \to ...

称为 (K_{0},K_{1}) 的梅耶-菲托里斯序列。如果A是非空,那么在约化同调中也存在类似的正合序列。

在相对同调中,对子复形 L_{0} \subset K_{0} \subset K, \, L_{1} \subset K_{1} \subset K ,也有类似的同调的正合序列

... \to H_{i}(K_{0} \cap K_{1}, L_{0} \cap L_{1}) \to H_{i}(K_{0},L_{0}) \oplus H_{i}(K_{1},L_{1}) \to H_{i}(K_{0} \cup K_{1}, L_{0} \cup L_{1}) \to ...

称为相对Mayer-Vietoris序列

(14)Mayer-Vietoris序列的同态:如果 h: (K,K_{0},K_{1}) \to (L,L_{0},L_{1}) 是复形三元组之间的一个单纯映射,其中 K=K_{0} \cup K_{1}, \, L=L_{0} \cup L_{1} ,那么 h 诱导Mayer-Vietoris序列的同态。这个结果对一般的连续映射 h: (\left | K \right |,\left | K_{0} \right |,\left | K_{1} \right |) \to (\left | L \right |,\left | L_{0} \right |,\left | L_{1} \right |) 也成立

(15)双角锥的同调群:如果 S(K)=(w_{0} \ast K) \cup (w_{1} \ast K) 是复形K上的一个双角锥,那么对所有的p,均有一个约化同调群的同构 \widetilde{H}_{p}(S(K)) \cong \widetilde{H}_{p-1}(K) 

(16)Eilenberg-Steenrod公理:是拓扑空间上的同调论的共有性质。同调论可以定义为从拓扑空间偶范畴 \mathcal{A} 到Abel群范畴AbGrp的一族协变函子 H_{n} ,对每个整数 n 它把空间偶 (X, A) 映为Abel群 H_{n}(X,A) (称为同调群),把每个连续映射 h: (X, A) \to (Y, B) 映为同调群的同态 (h_{\ast})_{n}: H_{n}(X,A) \to H_{n}(Y,B) (称为诱导同态),还要定义一个自然变换 \partial_{\ast}: H_{n}(X,A) \to H_{n-1}(A, \varnothing) 称为联系同态(也称为边界映射),它们满足以下公理:

1)公理1(单位公理):如果 i: (X,A) \to (X,A) 是恒等映射,那么诱导同态 i_{\ast}: H_{n}(X,A) \to H_{n}(X,A) 是恒等同态;

2)公理2(复合公理):(k \circ h)_{\ast}= k_{\ast} \circ h_{\ast} ;

3)公理3(自然变换公理):联系同态 \partial_{\ast}: H_{n}(X,A) \to H_{n-1}(A, \varnothing) 是协变函子 H_{n} 的自然变换。也就是空间偶映射 f: (X,A) \to (Y,B) 满足 \partial_{\ast} \circ f_{\ast}=(f|_{A})_{\ast} \circ \partial_{\ast} ,即下列图表交换

4)同伦公理:如果两个映射 h,k: (X,A) \to (Y,B) 是同伦的,即存在一个映射 F:(X \times I, A \times I)\to (Y,B) 使得 F(x, 0)=h(x), \, F(x,1)=k(x) 对所有 x \in X 成立,那么 h_{\ast}=k_{\ast} ;

5)切除公理:对任意空间偶 (X, A) 和X的开子集U,如果U的闭包包含在A内部中即 \overline{U} \subset Int\,A ,那么空间偶的包含映射 i: (X-U,A-U) \to (X,A) 诱导一个同构 H_{n}(X-U,A-U) \cong H_{n}(X,A) ;

6)维数公理:如果P是单点空间,那么 H_{n}(P)=0 \, (n\neq 0) ,H_{0}(P) \cong Z ,H_{0}(P) 称为系数群;

7)正合公理:对任意空间偶 (X, A) ,同调群序列 ... \to H_{n}(A) \overset{i_{*}}{\rightarrow} H_{n}(X) \overset{\pi_{\ast}}{\rightarrow} H_{n}(X,A) \overset{\partial_{\ast}}{\rightarrow} H_{n-1}(A) \to ... 是长正合序列,其中 i_{\ast}, \, \pi_{\ast} 分别是由包含映射 i: A \to X 和 \pi: (X, \varnothing) \to (X, A) 诱导的同态,而 \partial_{\ast} 是由边缘算子 \partial_{p}: C_{p}(X, A) \to C_{p-1}(X,A) 诱导的联系同态;

8)可加性公理:如果 X=\coprod_{\alpha}X_{\alpha} 是拓扑空间族 X_{\alpha} 的非交并,那么 H_{n}(X) \cong \bigoplus_{\alpha}H_{n}(X_{\alpha}) 

公理的意义:

可以证明只要符合艾伦伯格-斯廷罗德公理的同调论都会有共同的结果,例如单纯同调论、奇异同调论、梅耶-菲托里斯序列。如果省略其中的维数公理,那么其余的公理所定义的是广义同调论(超同调论),它与常义同调论的区别在于单点空间在许多维数下具有非零的同调。最早发现的广义同调论有微分拓扑中的配边理论、向量丛中的拓扑K-理论

为处理非紧致的拓扑空间,通常还需要一条附加的公理:

9)紧支集公理:对任意空间偶 (X, A) ,存在一个紧致子空间偶 (X_{0},A_{0}) ,使得任意同调类 a \in H_{n}(X,A) 在由包含映射 i: (X_{0},A_{0}) \to (X,A) 诱导的同态 i_{\ast}: H_{n}(X_{0},A_{0}) \to H_{n}(X,A) 的像中,即存在 b \in H_{n}(X_{0},A_{0}) 使得 i_{\ast}(b)=a 

(17)单纯同调论的切除对:如果X是复形K的可剖空间,X=X_{1} \cup X_{2} ,并且 X_{1}, X_{2} 是K的子复形的可剖空间,那么 (X_{1},X_{2}) 是单纯同调论的切除对;

任意同调论的切除对:设 X=X_{1} \cup X_{2} ,(X_{1},X_{1} \cap X_{2}) 和 (X,X_{2}) 都是拓扑空间偶,如果 \left \{ Int\,X_{1}, Int\,X_{2} \right \} 覆盖X,并且 X_{1} 在X中闭的,那么 (X_{1},X_{2}) 对于任何满足艾伦伯格-斯廷罗德公理的同调论是一个切除对

(18)可三角剖分偶范畴上的单纯同调论满足艾伦伯格-斯廷罗德公理

(19)可三角剖分空间的切除定理:设A是拓扑空间X的子空间,U是X的子集并且 U \subset Int\,A,如果空间偶 (X, A) 和 (X-U, A-U) 都是可三角剖分的,那么包含映射 (X-U, A-U) \to (X,A) 诱导同构 H_{p}(X-U,A-U) \cong H_{p}(X,A) ;

注意这里并没有要求U是开子集,也没有要求 \overline{U} \subset Int\,A ,因此它是比切除公理更强的形式

(20)设 i: (X_{0},A_{0}) \to (X,A) 是可剖分偶的包含映射,其中 (X_{0},A_{0}) 是空间偶 (X, A) 的一个紧致子空间偶,如果同调类 a \in H_{p}(X_{0},A_{0}) 满足 i_{\ast}(a)=0 ,那么存在一个紧偶 (X_{1},A_{1}) 和包含映射 (X_{0},A_{0}) \overset{j}{\rightarrow} (X_{1},A_{1}) \overset{k}{\rightarrow} (X,A) ,使得 j_{\ast}(a)=0 

这说明可三角剖分偶的单纯同调满足紧支集公理

(21)给定有限生成Abel群的一个序列 G_{0},G_{1},...,G_{n} ,其中 G_{0},G_{n} 是自由的,并且 G_{0} 是非平凡的,那么存在一个n维有限复形K,使得对所有 i=0,...,n 均有 H_{i}(K) \cong G_{i} ;

给定有限生成Abel群的一个序列 G_{0},G_{1},... ,其中 G_{0} 是自由的和非平凡的,那么存在一个无限维或有限维的复形K,使得对每个 i 均有 H_{i}(K) \cong G_{i} 

 

奇异同调论


(1)p维标准单形:欧氏空间 E^{p} 中以下p+1个点 e_{0}=(0,...,0), e_{1}=(1,0,...,0), ..., e_{p}=(0,...,0,1) 为几何独立点集,以它们为顶点生成的单形记作 \Delta_{p}=[e_{0},e_{1},...,e_{p}] ,称为p维标准单形。点 v \in \Delta_{p} 的重心坐标是 v=\sum_{i=0}^{p}\lambda_{i}e_{i}=(\lambda_{0},\lambda_{1},...,\lambda_{p}) 。\Delta_{p} 有p+1个p-1维的面,它们是标准单形 [e_{0},...,\hat{e_{i}},...,e_{p}], \, (i=0,...,q) ; 

p维奇异单形:标准单形到拓扑空间的一个连续映射 \sigma: \Delta_{p} \to X ,称为X中的一个p维奇异单形。奇异单形不必是嵌入的,它甚至可以退化为一点,只要 \sigma 连续即可。奇异单形可以通过标准单形的重心坐标表示为 \sigma(\lambda_{0},...,\lambda_{p}) 。0维奇异单形是X中的一点,1维奇异单形是X中的一条道路;

线性奇异单形:取欧氏空间 E^{J} 的p+1个点 a_{0},...,a_{p} ,它们不心是几何独立的,存在唯一的连续映射 \sigma: \Delta_{p} \to E^{J} 将顶点 e_{i} 映到 a_{i} ,即 \sigma(\sum_{i=0}^{p}\lambda_{i}e_{i})=\sum_{i=0}^{p}\lambda_{i}a_{i} ,这样的奇异单形 \sigma 称为 E^{J} 中由点 a_{0},...,a_{p} 确定的线性奇异单形,记作 l(a_{0},...,a_{p}): \Delta_{p} \to E^{J} ;

p-1维面确定的线性奇异单形:在重心坐标下,映射 d_{i}: \Delta_{p-1} \to \Delta_{p} 定义为 d_{i}(\lambda_{0},...,\lambda_{p-1})=(\lambda_{0},...,\lambda_{i-1},0,\lambda_{i+1},...,\lambda_{p}) ,它同胚地将 \Delta_{p} 映射到 \Delta_{p} 的一个p-1维面,易见 d_{i} 就是p-1维线性奇异单形 l(e_{0},...,\hat{e}_{i},...,e_{p}) ;

(2)p维奇异链:拓扑空间X上的有限个p维奇异单形以整数为系数的形式和 x=\sum_{i=1}^{k}n_{i}\sigma_{i} ,称为X上的一个p维奇异链;

p维奇异链群:X上的全体p维奇异链的集合记作 S_{p}(X) ,以自然的方式定义奇异链的加法,n\sigma + m \sigma^{'}=(n+m)\sigma 当且仅当 \sigma, \sigma^{'} 是相等的奇异单形,则 S_{p}(X) 是一个以所有p维奇异单形为基的自由Abel群,称为p维整系数奇异链群。当p<0时 S_{p}(X)=0 ,当p>dimX时 S_{p}(X) 是有定义的,这与复形的单纯链群不同

(3)边缘算子:由标准单形 \Delta_{p}=[e_{0},e_{1},...,e_{p}] 定义的p维奇异单形 \sigma: \Delta_{p} \to X ,它的边缘定义为 \partial_{p}(\sigma)=\sum_{i=1}^{p}(-1)^{i}\sigma \circ l[e_{0},...,\hat{e}_{i},...,e_{p}] ,其中复合映射 \sigma \circ l[e_{0},...,\hat{e}_{i},...,e_{p}]: \Delta_{p-1} \to X 是X的一个p-1维奇异单形。即边缘就是将每个 p-1 维奇异单形给以定向,然后再把它们相加而得到的 p-1 维奇异链;

对任意p维奇异链 x \in C_{p}(X), \, x=\sum_{i=1}^{k}n_{i}\sigma_{i} ,定义 \partial_{p}(x)=\sum_{i=1}^{s}n_{i} \partial_{p} \sigma_{i} \in S_{p-1}(X) ,不难验证对任意 x,y \in S_{p}(X) ,有 

\partial_{p}(x)+\partial_{p}(-x)=0

\partial_{p}(x+y)=\partial_{p}(x)+\partial_{p}(y)

\partial_{p}(kx)=k\partial_{p}(x), \, k \in Z

因此算子 \partial_{p} 是一个同态 \partial_{p}: S_{p}(X) \to S_{p-1}(X) ,称为奇异链群 S_{p}(K) 的p维边缘算子或边缘同态,约定当 p\leq 0 时它是平凡同态,而且 \partial_{0}=0 ;

边缘算子性质:\partial_{p} \circ \partial_{p+1}=0 ,即对任意 x \in S_{p+1}(X) 有 \partial_{p} \partial_{p+1}(x)=0 

(4)奇异链复形:奇异链群族 \left \{ S_{p}(X) \right \} 与边缘同态族 \left \{ \partial_{p} \right \} 写成序列 ... \to S_{p}(X) \overset{\partial_{p}}{\rightarrow} S_{p-1}(X) \overset{\partial_{p-1}}{\rightarrow} ... \overset{\partial_{1}}{\rightarrow} S_{0}(X) \overset{\partial_{0}}{\rightarrow} 0 ,此序列称为X的奇异链复形,记作 \mathcal{C}(X)=\left \{ S_{p}, \partial_{p} \right \} ;

p维奇异闭链群:Z_{p}(X)=ker \, \partial_{p}=\left \{ x \in S_{p}(X) \,|\, \partial_{p}(x)=0 \right \} ;

p维奇异边缘链群:B_{p}(X)=im \, \partial_{p+1}=\left \{ \partial_{p+1}(y) \,|\, y \in S_{p+1}(X) \right \}

p维奇异同调群:即奇异链复形的同调群 H_{p}(X)=ker \, \partial_{p} / im \, \partial_{p+1}=Z_{p}(X)/B_{p}(X) 

(5)奇异同调类:由p维奇异闭链 z \in Z_{p}(X) 所确定的 H_{p}(X) 中的元素 [z]=z+B_{p}(X) \in H_{p}(X) ,称为拓扑空间X上的一个p维奇异同调类,z是同调类 [z] 的一个代表。[x]=[y] \in H_{p}(X) 的充要条件是 x,y \in Z_{p}(X) 且 x \sim y ;

同调群的加法运算:H_{p}(X) 的元素就是所有p维奇异同调类,对任意 [x],[y] \in H_{p}(X), \, k \in Z ,根据商群的定义,[x]+[y]=[x+y], \, [kx]=k[x] ,这就是奇异同调群上的加法运算;

同调关系:两个p维奇异链 x,y \in S_{p}(X) 如果它们的差为p维奇异边缘链 x-y \in B_{p}(X) ,即存在 z \in S_{p+1}(X) ,使得 x-y=\partial_{p+1}(z) ,这时它们有相同的同调类,我们称x同调于y,记作 x\sim y 或 x-y \sim 0。特别地,当 x=\partial_{p+1}z 时称x同调于零,或者称x形成边界;

(6)增广同态对拓扑空间X,S_{0}(X) 中的0维奇异链可表示为0维奇异单形即X中的点的形式和 x=\sum_{i=0}^{k}n_{i}x_{i} 。定义满同态 \varepsilon: S_{0}(X) \to Z 为对每个点 x_{i} 置 \varepsilon(x_{i})=1 ,对每个0维奇异链则有  \varepsilon(x)=\varepsilon(\sum_{i=0}^{k}n_{i}x_{i})=\sum_{i=0}^{k}n_{i} ,\varepsilon 称为奇异链群 S_{0}(X) 的增广同态。注意若X是道路连通的则有 ker \, \varepsilon =B_{0}(X) ; 

增广奇异链复形:在奇异链复形 \mathcal{C}(X) 的-1维处添加增广同态 \varepsilon: S_{0}(X) \to Z,得到的序列 ... \to S_{p}(X) \overset{\partial_{p}}{\rightarrow} S_{p-1}(X) \overset{\partial_{p-1}}{\rightarrow} ... \overset{\partial_{1}}{\rightarrow} S_{0}(X) \overset{\varepsilon}{\rightarrow} Z \to 0 ,称为增广奇异链复形,记作 \left \{ \mathcal{C}(X), \varepsilon \right \} ;

约化奇异同调群:即增广链复形 \left \{ \mathcal{C}(X), \varepsilon \right \} 的同调群,记作 H_{p}(\left \{ \mathcal{C}(X), \varepsilon \right \}) 或 \widetilde{H}_{p}(X) ,即当p=0时 \widetilde{H}_{0}(X)=ker\, \varepsilon /im \, \partial_{1}, \, H_{0}(X)=\widetilde{H}_{0}(X) \oplus Z ,当 p \neq 0时 \widetilde{H}_{p}(X)=H_{p}(X) 。拓扑空间的约化同调群能更好地描述这个拓扑空间有几维的“洞”(因为道路连通的拓扑空间没有零维的洞,此时它的零维约化同调群也为零);

零调空间:如果拓扑空间X的约化奇异同调群在所有维数下都为0,就称X是零调的。注意有些书上是用常义同调群为零来定义零调的

(6)奇异链映射 f_{\sharp} :设 f: X \to Y 是拓扑空间的连续映射,奇异链群同态 (f_{\sharp})_{p}: S_{p}(X) \to S_{p}(Y) 定义为对X上的p维奇异单形 T: \Delta_{p} \to X 有 (f_{\sharp})_{p}(T)=f \circ T ,得到Y上的一个p维奇异单形。通常省略维数下标简写为 f_{\sharp} ,f_{\sharp} 称为 f 诱导的p维奇异链映射。 f_{\sharp} 会把闭链映到闭链,把边缘链映到边缘链;

 f_{\sharp} 也会诱导同调群的同态 f_{\ast}: H_{p}(X) \to H_{p}(Y) ,以及约化同调群的同态 f_{\ast}: \widetilde{H_{p}}(X) \to \widetilde{H_{p}}(Y)  ,它们称为连续映射 f: X \to Y 的p维诱导同态

性质:奇异链映射 f_{\sharp} 与边缘同态 \partial 可交换,即 \partial f_{\sharp}(T)=f_{\sharp} \partial(T) 

(7)星凸空间:给定子空间 X \subset E^{J} 及任意一点 w \in X ,如果对异于 w 的每一点 x \in X ,从x到w的线段都在X中,就称X关于点w是星凸的

(8)奇异链的括号算子:对X的一个p维奇异单形 T: \Delta_{p} \to X ,定义一个p+1维奇异单形 [T,w]: \Delta_{p+1} \to X ,它把从点 x \in \Delta_{p} 到 e_{p+1} 的线段线性地映射到从T(X)到点w的线段。对X上的p维奇异链 x=\sum_{i=1}^{k}n_{i}T_{i} ,则定义 [x,w]=\sum_{i=1}^{k}n_{i}[T_{i}, w] ,得到一个p+1维奇异链。注意 [T, w] 是连续的,如果T是线性奇异单形 l(a_{0},...,a_{p}): \Delta_{p} \to E^{J} ,那么 [T, w] 就是线性奇异单形 l(a_{0},...,a_{p},w): \Delta_{p+1} \to E^{J} 

(9)相对奇异同调群:

相对奇异链群:如果A是拓扑空间X的子空间,则商群 S_{p}(X, A)=S_{p}(X)/S_{p}(A) 称为X模A的相对奇异链群,也称为空间偶(X, A)的相对奇异链群,它是自由群,以所有形如 T_{i} + S_{p}(A) 的陪集为基,其中 T_{i}: \Delta_{p} \to X-A 是在K中但不在A中的p维奇异单形;

相对奇异链群的边缘算子:\partial_{p}: S_{p}(X, A) \to S_{p-1}(X, A) ;

相对奇异闭链群:Z_{p}(X,A)=ker \, \partial_{p} ;

相对奇异边缘链群:B_{p}(X,A)=im \, \partial_{p+1} ;

相对奇异同调群:空间偶 (X, A) 的相对同调群定义为 H_{p}(X,A)=Z_{p}(X,A)/B_{p}(X,A) ;

(10)相对奇异链映射:设 f: (X,A) \to (Y,B) 是拓扑空间偶的连续映射,则同态 f_{\sharp}: S_{p}(X,A) \to S_{p}(Y,B) 称为 f 诱导的相对奇异链映射,它与边缘算子 \partial_{p} 可交换,因而它诱导同态 f_{\ast}: H_{p}(X,A) \to H_{p}(Y,B) ;

链映射:设 \mathcal{C}=\left \{ C_{p}, \partial_{p} \right \}, \, \mathcal{C}^{'}=\left \{ C_{p}^{'}, \partial_{p}^{'} \right \} 是两个奇异链复形,一个链映射 f: \mathcal{C} \to \mathcal{C}^{'} 是一族同态 f_{p}: C_{p} \to C_{p}^{'} 使得 \partial_{p}^{'} \circ f_{p}=f_{p-1} \circ \partial_{p} 对所有p都成立,即下列图表中每个方形都是交换的

保持增广的链映射:设 \left \{ \mathcal{C}, \varepsilon \right \}, \, \left \{ \mathcal{C}^{'},\varepsilon^{'} \right \} 是两个增广链复形,当 \varepsilon^{'} \circ f_{0}=\varepsilon 时,称链映射 f: \mathcal{C} \to \mathcal{C}^{'} 是保持增广的;

链映射的诱导同态:一个链映射 f: \mathcal{C} \to \mathcal{C}^{'} 诱导同调群的同态 (f_{\ast})_{p}: H_{p}(\mathcal{C}) \to H_{p}(\mathcal{C}^{'}) ,称为p维诱导同态;

(11)链同伦:如果 f,g: \mathcal{C} \to \mathcal{C}^{'} 是链复形之间的两个链映射,那么 f 到 g 的一个链同伦定义为一族同态 D_{p}:C_{p} \to C_{p+1}^{'} 使得对所有 p 都有 \partial_{p+1}^{'}D_{p} + D_{p-1}\partial_{p}=g_{p}-f_{p} ,可简写为 \partial^{'} D + D \partial = g-f 。链同伦是链映射集合上的等价关系,链映射的复合在链同伦类上诱导一个完全确定的复合运算。链同伦记作 f \simeq g ,可以用下列交换图表示

诱导链映射的链同伦:对空间偶的两个连续映射 f,g: (X,A) \to (Y,B) ,如果对每个p都有一个同态 D_{p}: C_{p}(X,A) \to C_{p+1}(Y,B) 满足等式 \partial_{p+1}^{'}D_{p} + D_{p-1}\partial_{p}=(g_{\sharp})_{p}-(f_{\sharp})_{p} ,可简写为 \partial D + D \partial = g_{\sharp}-f_{\sharp} ,那么D称为诱导链映射 f_{\sharp}, \, g_{\sharp} 之间的一个链同伦,记作 f_{\sharp} \simeq g_{\sharp} ,可用下列图表表示(其中 K=(X,A),L=(Y,B) )

链等价(链同伦等价):对一个链映射 f: \mathcal{C} \to \mathcal{C}^{'} ,如果存在一个链映射 g: \mathcal{C}^{'} \to \mathcal{C} 使得 g \circ f, \, f \circ g 分别链同伦于 \mathcal{C}, \, \mathcal{C}^{'} 上的恒等映射,即 g \circ f \simeq id_{C}, \, f \circ g \simeq id_{C^{'}} ,则称链映射 f 是一个链等价,g 称为 f 的链同伦逆

(12)重心重分算子:设X是一个拓扑空间,用归纳法定义一个同态 sd_{X}: S_{p}(X) \to S_{p}(X) ,若 T: \Delta_{0} \to X 是0维奇异单形,则定义 sd_{X}(T)=T ;假设维小于p时 sd_{X} 已被定义,对恒等映射 i_{p}:\Delta_{p} \to \Delta_{p} ,标准单形 \Delta_{p} 关于其重心 \widehat{\Delta}_{p} 是星凸的,利用奇异链的括号算子定义 sd_{\Delta_{p}}(i_{p})=(-1)^{p}[sd_{\Delta_{p}}(\partial \, i_{p}), \widehat{\Delta}_{p}] ,于是对X上的任意p维奇异单形 T: \Delta_{p} \to X ,定义 sd_{X}(T)=T_{\sharp}(sd_{\Delta_{p}}(i_{p})) ,这里 T_{\sharp}: S_{p}(\Delta_{p}) \to S_{p}(X) 是链映射。sd_{X} 称为X的首次重心重分算子。类似地可以定义多次重心重分的算子 sd^{m}T 

(13)重分奇异链群:设 \mathcal{A} 是拓扑空间X的一个子集族,其子集的内部覆盖X,奇异链群 S_{p}^{\mathcal{A}}(X) 表示由 \mathcal{A} 小的奇异单形(即奇异单形的像在 \mathcal{A} 的一个元素中)生成的 S_{p}(X) 的子群,称为重分奇异链群;

重分奇异链复形:\mathcal{C}^{\mathcal{A}}(X) 表示链群为 S_{p}^{\mathcal{A}}(X) 的奇异链复形,称为重分奇异链复形,它是 \mathcal{C}(X) 的子链复形。因此有重分奇异链复形的包含映射 i: \mathcal{C}^{\mathcal{A}}(X) \to \mathcal{C}(X) ,它表示一族重分的包含同态 i_{p}: S_{p}^{\mathcal{A}}(X) \to S_{p}(X)

(14)零调模:设 G: \mathcal{C} \to \mathcal{A} 是从范畴 \mathcal{C}(拓扑空间范畴或拓扑空间偶范畴)到增广链复形范畴 \mathcal{A} 的函子,它把对象 X \in ob(\mathcal{C}) 映为增广链复形 ... \to G_{p}(X) \overset{\partial_{p}}{\rightarrow} G_{p-1}(X) \overset{\partial_{p-1}}{\rightarrow} ... \overset{\partial_{1}}{\rightarrow} G_{0}(X) \overset{\varepsilon}{\rightarrow} Z \to 0 ,G_{p}(X) 表示它的p维群,把连续映射 f: X \to Y 映为链映射 f_{\sharp}: G_{p}(X) \to G_{p}(Y) ,\mathcal{U} 是 \mathcal{C} 的对象的一个子集,称为模或模对象。如果对每个 X \in \mathcal{U} ,G(X) 都是零调的,则称函子G关于集族 \mathcal{U} 是零调的,\mathcal{U} 称为函子G的一个零调模。如果对每个整数p,存在 \mathcal{U} 中的对象子集 \left \{ M_{\alpha} \right \}_{\alpha \in J_{p}} 和每个群的一个元素 i_{\alpha} \in G_{p}(M_{\alpha}) 构成的子集 \left \{i_{\alpha} \right \}_{\alpha \in J_{p}} ,满足对给定的X,当 \alpha 遍历 J_{p} ,f 遍历 hom(M_{\alpha},X) 时,各元素 G(f)(i_{\alpha}) \in G_{p}(X) 互不相同并且形成 G_{p}(X) 的一个基,则称函子G关于集族 \mathcal{U} 是自由的,\mathcal{U} 称为函子G的一个自由模

例子:

拓扑空间范畴到奇异链复形范畴的函子 X \overset{G}{\rightarrow} \mathcal{C}(X), \, f \overset{G}{\rightarrow} f_{\sharp} ,令 \mathcal{U}=\left \{ \Delta_{p}: p=0,1,... \right \} 为各维数标准单形的合集,则 \mathcal{U} 是零调的,也是自由的,因为存在 \mathcal{U} 的一个对象 \left \{ \Delta_{p} \right \} 和一个恒等奇异单形链 i_{p}: \Delta_{p} \to \Delta_{p}, \, i_{p} \in C_{p}(\Delta_{p}) ,满足当T遍历所有连续映射 \Delta_{p} \to T 时,各元素 T_{\sharp}(i_{p})=T 形成 C_{p}(X) 的一个基;

拓扑空间偶范畴到奇异链复形范畴的函子 (X, Y) \overset{G}{\rightarrow} \mathcal{C}(X,Y), \, (f,g) \overset{G}{\rightarrow} (f \times g)_{\sharp} ,令 \mathcal{U}=\left \{ (\Delta_{p},\Delta_{p}): p,q=0,1,... \right \} 为各维数标准单形的合集,由于 (\Delta_{p},\Delta_{q}) 是可缩的,则 \mathcal{U} 是零调的,同时它也是自由的,因为存在 \mathcal{U} 的一个对象 \left \{ (\Delta_{p},\Delta_{q}) \right \} 和对角映射 d_{p} \in S_{p}(\Delta_{p} \times \Delta_{q}), \, d_{p}(x)=(x,x) 的集合 \left \{ d_{p} \right \} ,满足当 f, g 分别遍历所有连续映射 \Delta_{p} \to X 和 \Delta_{p} \to Y 时, (f \times g)_{\sharp}(d_{p}) 遍历所有映射 \Delta_{p} \to X \times Y ,即遍历 S_{p}(X \times Y) 的基

(15)切除对:设拓扑空间 X=X_{1} \cup X_{2} ,如果拓扑空间偶的包含映射 i: (X_{1},X_{1} \cap X_{2}) \to (X,X_{2}) 诱导同构 i_{\ast}:H_{p}(X_{1},X_{1} \cap X_{2}) \cong H_{p}(X,X_{2}) ,则称 \left \{ X_{1},X_{2} \right \} 是这个同调论的一个切除对,(X,X_{1},X_{2}) 称为正合三元组

(16)锥形:这里定义一般拓扑空间上的锥形。设X是拓扑空间,在积空间 X \times I 中定义关系 ~ 为,X \times \left \{ 1 \right \} 的点彼此等价,而 X \times (I-\left \{ 1 \right \}) 中的点只与自身等价,~ 是等价关系,由这一等价关系定义的商空间称为锥形,记作 CX=X \times I / \sim。直观地,CX是将 X \times I 中所有形如(x,1)的点捏成同一点得到的,这个点称为锥形的顶点。(x,t) \in X \times I 在锥形CX中的像记作 [x,t] ;

双角锥:拓扑空间X的双角锥是 X \times [-1,1] 通过把子集 X \times 1, \, X \times (-1) 各自等同于一个点而得到的商空间,记作 S(X)

(16)定向单形与有序单形之间的链映射:选取单纯复形K的顶点的一种偏序,使得它在K的每个单形的顶点上诱导一个线性序,对给定的序 v_{0}<v_{1}<...<v_{p} ,定义 \phi: C_{p}(K) \to C_{p}^{'}(K) 为 \phi([v_{0},...,v_{p}])=(v_{0},...,v_{p}) ,即把定向单形映为有序单形。定义 \varphi: C_{p}^{'}(K) \to C_{p}(K) 为  \varphi((v_{0},...,v_{p}))=[v_{0},...,v_{p}]  若 v_{i} 是互不相同的,否则 \varphi((v_{0},...,v_{p}))=0 。那么 \phi, \, \varphi 都是保持增广的链映射,并且它们是链同伦等价的。它们的诱导同态为 \phi_{\ast}: \widetilde{H}_{p}(K) \to \widetilde{H}_{p}(\mathcal{C}^{'}(K)) ,和 \varphi: \widetilde{H}_{p}(\mathcal{C}^{'}(K)) \to \widetilde{H}_{p}(K)  ,实际均为同构

(17)有序单形到奇异单形的链映射:设K是单纯复形,C_{p}^{'}(K) 是K的p维有序单纯链群,S_{p}(\left | K \right |) 是剖分空间 \left | K \right | 的p维奇异链群,定义 \theta: C_{p}^{'}(K) \to S_{p}(\left | K \right |) 为 \theta((v_{0},...,v_{p}))=l(v_{0},...,v_{p}) ,即对K的有序单形 (v_{0},...,v_{p}) 指派一个把 \Delta_{p}=[e_{0},e_{1},...,e_{p}] 映入 \left | K \right | ,并且把 e_{i} 映到 v_{i} 的线性奇异单形 l(v_{0},...,v_{p}): \Delta_{p} \to \left | K \right | ,\theta 是一个链映射并且是保持增广的。若 K_{0} 是K的子复形,则对应地有保持增广的链映射 \theta: C_{p}^{'}(K,K_{0}) \to S_{p}(\left | K \right |, \left | K_{0} \right |) 。它们诱导的同态为 \theta_{\ast}: \widetilde{H}_{p}(\mathcal{C}^{'}(K)) \to \widetilde{H}_{p}(\left | K \right |) ,以及 \theta_{\ast}: \widetilde{H}_{p}(\mathcal{C}^{'}(K, K_{0})) \to \widetilde{H}_{p}(\left | K \right |,\left | K_{0} \right |) ,实际上均为同构

(18)定向单形到奇异单形的链映射:\mathcal{C}(K) 是单纯复形K的单纯链复形,\mathcal{C}(\left | K \right |) 是剖分空间 \left | K \right | 的奇异链复形,选取K的顶点的一种偏序,使得它在K的每个单形的顶点上诱导一个线性序,对给定的序 v_{0}<v_{1}<...<v_{p} ,映射 \eta: \mathcal{C}(K) \to \mathcal{C}(\left | K \right |) 或者写作 \eta: C_{p}(K) \to S_{p}(\left | K \right |) ,定义为 \eta([v_{0},...,v_{p}])=l(v_{0},...,v_{p}) , 即把定向单形映为线性奇异单形 l(v_{0},...,v_{p}): \Delta_{p} \to \left | K \right | 。\eta 是一个链映射,它保持增广并且与包含映射交换。实际上 \eta 恰好是复合映射

\mathcal{C}(K) \overset{\phi}{\rightarrow} \mathcal{C}^{'}(K) \overset{\theta}{\rightarrow} \mathcal{C}(\left | K \right |)

若 K_{0} 是K的子复形,则对应地有保持增广的链映射 \eta: C_{p}(K,K_{0}) \to S_{p}(\left | K \right |, \left | K_{0} \right |) 。显然 \eta 依赖于所选取的K的顶点序,但诱导同态 \eta_{\ast}: \widetilde{H}_{p}(K) \to \widetilde{H}_{p}(\left | K \right |) ,以及 \eta_{\ast}: \widetilde{H}_{p}(K,K_{0}) \to \widetilde{H}_{p}(\left | K \right |,\left | K_{0} \right |) 却不依赖于此,因为 \eta_{\ast}=\theta_{\ast} \circ \phi_{\ast} ,并且它们均为同构

(18)局部同调群:设X是Hausdorff空间,X在一点 x \in X 处的局部同调群是相对奇异同调群 H_{p}(X,X-x) 

(19)流形:一个Hausdorff空间X,每一点都有一个邻域同胚于Euclid空间 R^{m} 中的一个开集,则称X为m维流形。注意这里并没有要求X具有可数基这样的条件;

带边流形:一个Hausdorff空间X,每一点都有一个邻域同胚于Euclid半空间 H^{m}=\left \{ (x_{1},...,x_{m}) \,|\, x_{i}\geq 0 \right \} 中的一个开集,则称X为m维带边流形。m维流形自然是m维带边流形。H^{m} 本身就是一个m维带边流形,边界为 Bd\,H^{m}=R^{m-1} \times 0 ;

带边流形的坐标卡:带边流形X中的开集U到 H^{m} 中的开集V的一个同胚 h: U \to V ,称为X上的一个坐标卡;

带边流形的边界:设X是一个m维带边流形,如果X的一点x在x的一个坐标卡下被映射到 Bd \, H^{m} 的一点,那么它在每一个这样的坐标卡下都被映射到 Bd \, H^{m} 的一点,把这样的点称为X的边界点,所有这样的点的集合称为带边流形X的边界,记作 Bd\,X ,而 Int \, X=X-Bd \, X 称为X的内部;

带边流形的维数:设X是一个m维带边流形,则m是由X唯一确定的,因为它是唯一的整数使得对于X中的至少一个点x,群 H_{m}(X,X-x) 是非平凡的,m称为带边流形的维数。

例子:

R^{n} 中的单位球 B^{n} 是一个n维带边流形,并且 Bd \, B^{n}=S^{n-1} ;

n维单形 \sigma 是一个n维带边流形,因为存在 \sigma 到 B^{n} 的一个同胚,它把 \sigma 所有真面的并Y,映射到 S^{n-1} ,Y就是 \sigma 的边界,即 Bd \, \sigma ,而 Int \, \sigma=\sigma-Y 是内部

(20)分离空间:设A是拓扑空间X的子空间,即 A\subset X,如果 X-A 是不连通的,则称空间A分离空间X。如果 X-A 有n个连通分支,称A将X分离成n个连通分支

(21)m维胞腔:同胚于m维单位球 B^{m} 的空间,称为m维胞腔。若它同胚于 Int \, B^{m} ,则称为m维开胞腔

(22)商空间:设 (X, \tau) 是拓扑空间,\sim 是X上的一个等价关系,所有等价类的集合是X的一个划分,记作 X/\sim,称为X关于\sim的商集。把X上的点映射到它所在的等价类,得到的映射 p: X \to X/\sim 称为称为粘合映射,它是一个商映射。商集上的子集族 \tilde{\tau}=\left \{ V \subset X/\sim \,|\, p^{-1}(V) \in \tau \right \} 就是 X/\sim 的一个拓扑,称为X关于\sim的商拓扑,(X/\sim, \tilde{\tau}) 称为商空间。

直观上,商空间表明原来空间上属于同一个等价类的所有点(一个点集),在新的空间上都被粘合为一个点(用一个等价类表示),因此商空间 X/\sim 也常称为X的粘合空间,或分解空间

(22)上半连续的分解:如果 X^{\ast} 是一个将拓扑空间X分成一些闭子集的划分,并且商映射 p: X^{\ast} \to X 是闭映射(即把每个闭集映为闭集),则 X^{\ast} 是X的一个商空间,称为X的一个上半连续的分解。这意味着对X的每个闭子集A,集合 p^{-1}p(A) 在X中也是闭的,称为A的饱和。这时X的正规性就蕴涵着 X^{\ast} 的正规性

(23)粘着空间:设X,Y是不相交的拓扑空间,A是X的闭子集,f: A \to Y 是连续映射,定义一个商空间为把每个集合 \left \{ y \right \} \cup f^{-1}(y), \, y \in Y 等同于一点,其他的点 x \in X-A 等同于自己而构成的 X \cup Y 的商空间,也即把X划分成这些集合以及 x \in X-A 的单点集 \left \{ x \right \},这个商空间记作 X \cup_{f} Y ,称为由 f 决定的粘着空间,商映射记作 p: X \cup Y \to X \cup_{f} Y 。

直观地说,粘着空间 X \cup_{f} Y 是把X中的点集A与Y中的点集 f(A) 粘着在一起而形成的粘合空间

(24)CW复形(胞腔复形):由一个Hausdorff空间X和一个作为X划分的不相交开胞腔族(维数不必统一) \left \{ e_{\alpha} \right \} 构成,即 X=\coprod_{\alpha \in J}e_{\alpha} ,它们满足条件:

1)闭包有限性:每个m维胞腔 e_{\alpha} 都存在一个连续映射 f_{\alpha}: B^{m} \to X (称为特征映射),它把单位球内部 Int \, B^{m} 同胚地映射到 e_{\alpha} 上,把单位球边界 Bd \, B^{m}=S^{m-1} 映射到有限个低于m维的开胞腔的并之中;

2)弱拓扑:X具有关于闭胞腔族 \left \{ \bar{e}_{\alpha} \right \} 的弱拓扑,即每个子集A在X中是闭的,当且仅当它与每个闭胞腔的交 A \cap \bar{e}_{\alpha} 在 \bar{e}_{\alpha} 中是闭的。

开胞腔族为有限的CW复形,称为有限CW复形,有限CW复形必定是紧致的。CW复形X中开胞腔的最大维数,称为X的维数。\left \{ e_{\alpha} \right \} 也称为X的一个胞腔分解。

注意上述两个条件蕴涵了 f_{\alpha}(B^{m})=\bar{e}_{\alpha}, \, f_{\alpha}(Bd\, B^{m})=\bar{e}_{\alpha}-e_{\alpha} ,并且 \bar{e}_{\alpha}-e_{\alpha} 必定属于有限个低于m维的开胞腔的并之中。因此,特征映射也可以写作 f_{\alpha}: (B^{m}, S^{m-1}) \to (\bar{e}_{\alpha}, \bar{e}_{\alpha}-e_{\alpha}) 。

直观地说,CW复形是由一些(有限多个或无穷多个)开胞腔从低维到高维逐层堆积而成的Hausdorff空间,它表示从一族闭胞腔通过构造适当的粘着商空间而粘合起来的空间。单纯复形是CW复形的特例。同伦论中往往需要在拓扑空间上定义满足某种条件的连续映射,这对非常一般的拓扑空间来说很难着手。但对于CW复形,则可以从低维到高维,在一个一个胞腔上给出定义,即采用“逐层扩张”的方式得到所需要的连续映射。如果扩张到某一层遇到阻碍,就产生阻碍上闭链,阻碍上同调类等概念,这样就能利用同调来讨论关于连续映射的扩张或同伦等问题。

(25)正则胞腔复形:一个CW复形X,如果特征映射 f_{\alpha} 能取成同胚(即 f_{\alpha}: B^{m} \to \bar{e}_{\alpha} 是同胚),并且 f_{\alpha}(Bd\, B^{m})=\bar{e}_{\alpha}-e_{\alpha} 恰好等于有限个低于m维的开胞腔的并,则称X为正则胞腔复形。正则胞腔是可三角剖分的;

CW复形的子复形:CW复形X中的由开胞腔的并构成的闭子空间,称为X的一个子复形;

CW复形的p维骨架:CW复形X中的至多p维开胞腔的并构成的子空间,是X的一个子复形,称为X的p维骨架,记作 X^{p} ;

可三角剖分的CW复形:对CW复形X,若存在一个复形K,使得X的每一个骨架 X^{p} 能被K的一个子复形三角剖分,则称X是一个可三角剖分的CW复形

(26)CW复形的胞腔链群:若X是一个CW复形,定义相对奇异同调群 D_{p}(X)=H_{p}(X^{p},X^{p-1})  为X的p维胞腔链群;

边缘算子: \partial_{p}: D_{p}(X) \to D_{p-1}(X) 定义为复合映射 H_{p}(X^{p},X^{p-1}) \overset{\partial_{\ast}}{\rightarrow} H_{p-1}(X^{p-1}) \overset{j_{\ast}}{\rightarrow} H_{p-1}(X^{p-1}, X^{p-2}) ,其中同态 j_{\ast} 是包含映射 j: (X^{p-1}) \to (X^{p-1},X^{p-2}) 诱导的;

胞腔链复形:把链复形 \mathcal{D}(X)=\left \{ D_{p}(X), \partial_{p} \right \} 称为X的胞腔链复形, D_{p}(X) 也是胞腔链复形的胞腔链群;

性质:\partial_{p} \circ \partial_{p-1}=0 ,这可以由 H_{p-1}(X^{p-1}) \overset{j_{\ast}}{\rightarrow} H_{p-1}(X^{p-1}, X^{p-2}) \overset{\partial_{\ast}}{\rightarrow} H_{p-2}(X^{p-2}) 是正合的而得出

注意当X是可三角剖分的CW复形时,为方便计算 H_{p} 也可以使用单纯同调群,因为它同构于奇异同调群

(27)p维定向开胞腔:对CW复形X的每一个p维开胞腔 e_{\alpha} ,群 H_{p}(\bar{e}_{\alpha}, \bar{e}_{\alpha}-e_{\alpha}) 是无限循环群,把这个群的两个生成元称为 e_{\alpha} 的两种定向,p维开胞腔是指定了一种定向的 e_{\alpha} 。胞腔链群 D_{p}(X)=H_{p}(X^{p},X^{p-1}) 是一个自由Abel群,X的每一个p维定向开胞腔,在包含映射的诱导同态 H_{p}(\bar{e}_{\alpha}, \bar{e}_{\alpha}-e_{\alpha}) \to H_{p}(X^{p},X^{p-1}) 之下的像,就构成 H_{p}(X^{p},X^{p-1}) 的一个基;

实际上,当X是可三角剖分的CW复形,三角剖分为 h: \left | K \right | \to X ,设 H_{p} 表示单纯同调,则胞腔链群 H_{p}(X^{p},X^{p-1}) 是单纯链群 C_{p}(K) 的子群,它是由K的所有被 X^{p} 承载且其边缘被 X^{p-1} 承载的p维链组成

(28)n维实射影空间:是n维球面 S^{n} 中对每一个点 x 等价于它的对径点 -x 而得到的商空间,称为n维实射影空间,记作 P^{n} 或 RP^{n} 。商映射 p: S^{n} \to P^{n} 是一个闭映射。实射影空间是正规的Hausdorff空间,RP^{n-1} 是 RP^{n} 的闭子空间。特别地,n=2 时表示射影平面 P^{2} ,注意射影平面不能嵌入到 R^{3} 中,而 P^{0} 是单点;

无穷维实射影空间:射影空间的递增序列 P^{0} \subset P^{1} \subset ... 的凝聚并,记作 P^{\infty} ,称为无穷维实射影空间;

复数空间:所有复数点 z=(z_{1},...,z_{n}) 组成的空间,记作 C^{n} ,显然有同胚 \rho: C^{n} \to R^{2n} ,其定义为 \rho(z_{1},...,z_{n})=(Re z_{1},Im z_{1},...) ,称之为实化算子。定义 \left | z \right |=\left \| \rho(z) \right \|=\left [ \sum_{i=1}^{n}z_{i}\overline{z}_{i} \right ]^{1/2} ;

n维复球面:把适合 \left | z \right |=1 所有点 z=(z_{1},...,z_{n}) 组成的 C^{n+1} 的子空间,称为n维复球面,在实化算子作用下,它对应于2n维的实球面 S^{2n+1} ;

n维复射影空间:在n维复球面 S^{2n+1} \subset C^{n+1} 上,对每一个适合 \left | \lambda \right |=1 的复数 \lambda ,定义复数点的等价关系 (z_{1},...,z_{n+1}) \sim (\lambda z_{1},...,\lambda z_{n+1}) ,而得到的商空间,称为n维复射影空间,记作 CP^{n} 。商映射 p: S^{2n+1} \to CP^{n} 是一个闭映射。CP^{n} 是正规的Hausdorff空间,CP^{n-1} 是 CP^{n} 的闭子空间。CP^{0} 是单点;

无穷维复射影空间:复射影空间的递增序列 CP^{0} \subset CP^{1} \subset ... 的凝聚并,记作 CP^{\infty} ,称为无穷维复射影空间

(29)群作用的轨道空间:设X是一个空间,G是从空间X到自身的同胚群(即所有同胚映射 f:X \to X 构成的群)的一个子群,对任意 x \in X, \, g \in G ,定义等价关系 x\sim g(x) ,X在该等价关系下的商空间 X/G 称为X在群G作用下的轨道空间,x的等价类称为x的轨道;

处处不连续的群作用:设G是空间X的所有同胚构成的群,如果群G在X上的作用,满足对任意 x \in X 和非单位元 g \in G,都存在x的邻域U使得 g(U) 与U无交,则称群G在X上的作用是处处不连续的。可见当 g_{0}\neq g_{1} 时便有 g_{0}(U) 与 g_{1}(U) 无交;

处处没有不动点的群作用:设G是空间X上的同胚群,如果群G在X上的作用,满足对任意的非单位元(即非恒等映射) g \in G,都没有不动点,则称群作用G是处处无不动点的

(30)透镜空间:将3维的单位实球面 S^{3}=\left \{ x \in R^{4} \,:\, x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2}=1 \right \} 看作两个复变数的空间 C^{2} 中的单位球面 S^{3}=\left \{ (z_{1},z_{2}) \in C^{2} \,:\, \left | z_{1} \right |^{2} + \left | z_{2} \right |^{2}=1 \right \} ,对互素的正整数 (n,k)=1 ,定义映射 h: S^{3} \to S^{3} 为 h(z_{1},z_{2})=(z_{1}e^{2\pi i/n}, z_{2}e^{2\pi ik/n}) ,h 是S^{3} 的同胚群中的元素,则h生成同胚群的一个n阶循环子群 G=Z_{n} ,并且G是处处没有不动点的,轨道空间 S^{3}/G 称为 (n,k) 型透镜空间,记作 L(n,k) ,它是紧致的3-维流形;

推广到高维:给定互素的正整数 (p,q_{1},...,q_{n})=1 ,将单位实球面 S^{2n-1} 看作复空间 C^{n} 中的单位球面,定义映射 h: S^{2n-1} \to S^{2n-1} 为 h(z_{1},...,z_{n})=(z_{1}e^{2\pi iq_{1}/p}, ...,z_{n}e^{2\pi iq_{n}/p}) ,则h生成 S^{2n-1} 的同胚群的一个p阶循环子群 G=Z_{p} ,并且G是处处没有不动点的,轨道空间 S^{2n-1}/G 称为 (p,q_{1},...,q_{n}) 型透镜空间,记作 L(p,q_{1},...,q_{n}) ,它是紧致的2n-1维流形;

另一种定义方式:对互素的正整数 (n,k)=1 ,构造透镜空间 L(n, k) 为球 B^{3} 的商空间如下:把 B^{3} 写成 B^{3}=\left \{ (z,t) \,|\, z \in C, t \in R, \left | z \right |^{2}+t^{2} \leq 1 \right \} 的形式,令 \lambda=e^{2\pi i/n} ,定义映射 f: S^{2} \to S^{2} 为 f(z, -t)=(\lambda^{k}z, -t) ,把 B^{3} 中 S^{2} 的下半球面 E_{-}^{2} 的每一点 (z, t) 与上半球面 E_{-}^{2} 的点 (\lambda^{k}z, -t) 等同起来,这样得到的商空间称为透镜空间 L(n, k) 

(31)Euler示性数:如果拓扑空间X的奇异同调群 H_{\ast}(X)=\bigoplus_{p\geq 0}H_{p}(X) (即各维数同调群的直和),满足每个同调群的秩也即Betti数  \beta_{p}=rank(H_{p}(X)/T_{p}(X)) 都是有限的,并且只有有限个 \beta_{p} 不等于0,则定义

\chi(X)=\chi(H_{\ast}(X))=\sum_{p=0}^{\infty}(-1)^{p} \, \beta_{p} 

为空间X的Euler示性数。由于 H_{p}(X) 是X的同伦不变量,因此 \beta_{p} 与 \chi(X) 都X的同伦不变量。

注意有限单纯复形、有限CW复形、紧致微分流形的Euler示性数都是存在的

(32)Morse函数:设M是一个紧致无边的微分流形,n=dim \, M ,f: M \to R 是M上的可微函数,x=(x_{1},...,x_{n}) 是M上的局部坐标

可微函数的临界点:把使得 df=\sum_{i=1}^{n}\frac{\partial f}{\partial x_{i}}d x_{i}=0 ,即 \frac{\partial f}{\partial x_{i}}=...=\frac{\partial f}{\partial x_{n}}=0 的点 x=(x_{1},...,x_{n}) 称为可微函数 f 的临界点;

正则临界点:如果在临界点处对称矩阵 \left ( \frac{\partial^{2}f}{\partial x_{i} \partial x_{j}} \right ) 是非退化的,称这种临界点是正则的;

Morse函数:如果 f 的所有临界点都是正则的,则称 f 是M上的一个Morse函数;

可微函数在临界点的指数:临界点处的对称矩阵 \left ( \frac{\partial^{2}f}{\partial x_{i} \partial x_{j}} \right ) 的负特征值的个数,称为 f 在这一临界点处的指数

(33)可定向的微分流形:一个n-维微分流形称为可定向的,如果它有一个n阶微分形式 \omega 在流形的每一点都不为零。反之,给定这样一个形式 \omega ,我们说这个流形由 \omega 定向

 

主要定理:

(1)诱导同态的函子性质:恒等映射 i: X \to X 诱导恒等同态 i_{\ast}: H_{p}(X) \to H_{p}(X) 。如果 h: X \to Y, \, k: Y \to Z 都是连续映射,那么 (k \circ h)_{\ast}=k_{\ast} \circ h_{\ast} ,同样的结果对约化奇异同调群也成立;

在相对同调中也成立:如果 i: (X,A) \to (X,A) 是恒等映射,则 i_{\ast} 是恒等同态,如果 h:(X,A) \to (Y,B), \, k: (Y,B) \to (Z,C) 都是连续映射,那么在相对同调中有 (k \circ h)_{\ast}=k_{\ast} \circ h_{\ast} 

这说明奇异同调论满足单位公理、复合公理

(2)奇异同调群的拓扑不变性:如果 h: X \to Y 是一个同胚,那么诱导同态 h_{\ast}: H_{p}(K) \to H_{p}(L) 就是一个同构

(3)多连通空间的同调群:设 \left \{ X_{\alpha} \right \}_{\alpha \in J} 是拓扑空间X的全体道路连通分支,那么

H_{p}(X) \cong \bigoplus_{\alpha \in J}H_{p}(X_{\alpha})

这说明奇异同调论满足可加性公理

(3)零维同调群的计算:拓扑空间X的零维奇异同调群 H_{0}(X) 是自由Abel群,设 \left \{ X_{\alpha} \right \}_{\alpha \in J} 是X的全体道路连通分支,那么

H_{0}(X) \cong \bigoplus_{\alpha \in J}Z

对每个 \alpha,设 T_{\alpha}: \Delta_{0} \to X_{\alpha} 是一个0维奇异单形(即单点),那么链 T_{\alpha} 的同调类 [T_{\alpha}]=T_{\alpha}+B_{0}(X_{\alpha}) \in H_{0}(X_{\alpha}) 构成 H_{0}(X) 的一个基。特别地,当X是道路连通的时,H_{0}(X) \cong Z 。

零维约化奇异同调群的计算: \widetilde{H_{0}}(X) 也是自由Abel群,并且 \widetilde{H_{0}}(X) \oplus Z \cong H_{0}(X) 。如果X是道路连通的则 \widetilde{H_{0}}(X)=0 ,这时即有 H_{0}(X) \cong Z ,每一个0维奇异单形 T_{\alpha} 的同调类都可以作为的生成元;如果X是不连通的,设 s 是一个固定的指标,那么链 T_{i}-T_{s} \, (i \neq s) 的同调类就构成 \widetilde{H_{0}}(X) 的一个基

(4)同伦群与同调群的同态:拓扑空间X的基本群与1维奇异同调群之间存在一个同态,即 \theta: \pi_{1}(X, x_{0}) \to H_{1}(X) 是同态,因为X中的一条道路就是一个1维奇异单形,一条闭道路就是一个1维奇异闭链。因此对基本群中的闭道路同伦类 [x],[y] \in \pi_{1}(X,x_{0}) ,有 \theta([x] \ast [y]) =\theta([x]) + \theta([y]), \, \theta([x]^{-1})=-\theta([x]) ,于是 \theta([x]^{m} \ast [y]^{n}) =\theta([x]^{m}) + \theta([y]^{n})=[mx+ny] \in H_{1}(X) ;

(5)Hurewicz定理:如果拓扑空间X是道路连通的,那么对基本群, \theta: \pi_{1}(X, x_{0}) \to H_{1}(X) 是满同态,ker\, \theta 是 \pi_{1}(X,x_{0}) 的交换子子群(即换位子群),并且有同构 \pi_{1}(X,x_{0})/ker\, \theta \cong H_{1}(X) ,特别地,当 \pi_{1}(X,x_{0}) 本身就是Abel群时有 \pi_{1}(X,x_{0}) \cong H_{1}(X) ;对高维同伦群,如果对任意 1\leq k \leq n-1 ,\pi_{k}(x,x_{0})=\left \{ e \right \} 也即为平凡群,那么 \theta: \pi_{n}(X, x_{0}) \to H_{n}(X), \, n\geq 2 是同构

推论:若拓扑空间X是单连通的,则 H_{1}(X)=0 。

Hurewicz定理揭示了同伦群与同调群的关系,特别是当X道路连通且 \pi_{1}(X) 是Abel群时,它与 H_{1}(X) 是同构的。由此可知同伦群一般比同调群要复杂

(6)奇异链的括号算子与边缘算子的关系:设拓扑空间X关于点w是星凸的, x=\sum_{i=1}^{k}n_{i}T_{i} 是X的一个p维奇异链,那么当p>0时,\partial[x,w]=[\partial x,c]+(-1)^{p+1}x ;当p=0时,\partial [x,w]=\varepsilon(x)T_{w}-x ,其中 T_{w}: \Delta_{0} \to w 是0维奇异单形,\varepsilon: S_{0}(X) \to Z 是增广同态

(7)一些零调的空间:若X是 E^{J} 的一个关于点 w 星凸的子空间,那么X在奇异同调中是零调的。特别地,任何单形在奇异同调中都是零调的,任何可缩空间都是零调的,因而任何凸集都是零调的

(8)空间偶的正合同调序列:若A是拓扑空间X的子空间,那么存在一个长正合同调序列

... \to H_{p}(A) \overset{i_{*}}{\rightarrow} H_{p}(X) \overset{\pi_{\ast}}{\rightarrow} H_{p}(X,A) \overset{\partial_{\ast}}{\rightarrow} H_{p-1}(A) \to ...

其中 i_{\ast}, \, \pi_{\ast} 分别是由包含映射 i: A \to X 和 \pi: (X, \varnothing) \to (X, A) 诱导的同态,而 \partial_{\ast} 是由边缘算子 \partial_{p}: S_{p}(X, A) \to S_{p-1}(X, A) 诱导的联系同态。在约化同调中也有类似的长正合同调序列( A\neq \varnothing )

... \to \widetilde{H}_{p}(A) \overset{i_{*}}{\rightarrow} \widetilde{H}_{p}(X) \overset{\pi_{\ast}}{\rightarrow} \widetilde{H}_{p}(X,A) \overset{\partial_{\ast}}{\rightarrow} \widetilde{H}_{p-1}(A) \to ...

这说明奇异同调论满足正合公理

证明思路:将之字形引理应用于奇异链群链复形的短正合序列

(9)正合同调序列的同态:如果 h: (X,A) \to (Y,B) 是拓扑空间偶之间的一个连续映射,那么诱导同态 h_{\ast}: H_{p}(X,A) \to H_{p}(Y,B) 给出(X, A)的正合同调序列到(Y, B)的正合同调序列的一个同态;如果对 i=p 和 i=p-1 ,h_{\ast}:H_{i}(X) \to H_{i}(Y) 和 h_{\ast}:H_{i}(A) \to H_{i}(B) 都是同构,那么 h_{\ast}: H_{p}(X,A) \to H_{p}(Y,B) 也是同构。这两个结果对约化同调也成立

这说明奇异同调论满足自然变换公理

(10)如果P是单点空间,那么 H_{p}(P)=0 \, (p \neq 0) ,而且 H_{0}(P) \cong Z 

这说明奇异同调论满足维数公理

(11)对任意空间偶 (X, A) ,存在一个紧致子空间偶 (X_{0},A_{0}) ,使得任意同调类 a \in H_{n}(X,A) 在由包含映射 i: (X_{0},A_{0}) \to (X,A) 诱导的同态 i_{\ast}: H_{n}(X_{0},A_{0}) \to H_{n}(X,A) 的像中,即存在 b \in H_{n}(X_{0},A_{0}) 使得 i_{\ast}(b)=a 。另外,如果有同调类 c \in H_{p}(X_{0},A_{0}) 满足 i_{\ast}(c)=0 ,那么存在一个紧偶 (X_{1},A_{1}) 和包含映射 (X_{0},A_{0}) \overset{j}{\rightarrow} (X_{1},A_{1}) \overset{k}{\rightarrow} (X,A) ,使得 j_{\ast}(c)=0 

这说明奇异同调论满足紧支集公理

(12)棱柱算子:设拓扑空间X上有两个包含映射 i,j: X \to X \times I ,其中 i(x)=(x,0), \, j(x)=(x,1), 即 i 把x映为(x, 0) ,而 j 把x映为(x, 1) 。那么它们的诱导链映射 i_{\sharp}, j_{\sharp}:S_{p}(X) \to S_{p}(X \times I) 之间存在一个链同伦,即对每个非负整数 p,存在一个同态 D_{p}: S_{p}(X) \to S_{p+1}(X \times I) 满足对任意p维奇异单形 T: \Delta_{p} \to X ,都有 \partial_{p+1}^{'}D_{p}(T) + D_{p-1}\partial_{p}(T)=j_{\sharp}(T)-i_{\sharp}(T) ,其中 \partial_{p+1}^{'}: S_{p+1}(X \times I) \to S_{p}(X \times I) 和 \partial_{p}: S_{p}(X) \to S_{p-1}(X) 是边缘算子。同伦算子 D_{p} 把X中的奇异单形链映为 X \times I 中的柱形链,因此也称为X的棱柱算子,记作 D_{X} 。D_{X} 是自然的(即具有函子性质),即如果 f:X \to Y 是连续映射,那么下列图表是交换的

空间偶的棱柱算子:类似地,对空间偶的包含映射 i,j: (X,A) \to (X \times I,A \times I) ,诱导链映射 i_{\sharp}, j_{\sharp}:S_{p}(X,A) \to S_{p}(X \times I, A \times I) 之间也存在一个链同伦 D_{X,A}: S_{p}(X,A) \to S_{p+1}(X \times I,A \times I) 

(13)如果两个连续映射 f,g: (X,A) \to (Y,B) 是同伦的,即存在一个映射 F:(X \times I, A \times I)\to (Y,B) 使得 F(x, 0)=f(x), \, F(x,1)=g(x) 对所有 x \in X 成立,那么 f_{\ast}=g_{\ast} 。如果 A=B=\varnothing ,那么该结论在约化同调中也成立 

这说明奇异同调论满足同伦公理

证明思路:利用同伦映射 F:(X \times I, A \times I)\to (Y,B) 的诱导链映射 F_{\sharp}:S_{p+1}(X \times I, A \times I)\to S_{p+1}(Y,B) ,它与棱柱算子复合得到同态 D_{p}=F_{\sharp} \circ D_{X,A}: S_{p}(X,A) \to S_{p+1}(Y,B) ,它实际上是链映射 f_{\sharp},g_{\sharp}: S_{p}(X,A) \to S_{p}(Y,B) 之间的一个链同伦,只要验证 \partial_{p+1}^{'}D_{p} + D_{p-1}\partial_{p}=(g_{\sharp})_{p}-(f_{\sharp})_{p} 即可。链同伦的两个映射,其诱导的同调群的同态是相等的,只要验证 g_{\ast}[z]-f_{\ast}[z]=[g_{\sharp}(z)-f_{\sharp}(z)]=0 即可

(14)奇异同调群的同伦不变性:如果拓扑空间偶之间的连续映射 f: (X,A) \to (Y,B) 是一个同伦等价,那么诱导同态 f_{\ast}: H_{p}(X,A) \to H_{p}(Y,B) 是一个同构。该结论对以任意Abel群为系数的奇异同调群也成立

(15)重心重分算子 sd_{X} 是一个保持增广的链映射,并且是自然的,即对任何连续映射 f: X \to Y 都有 f_{\sharp} \circ sd_{X}=sd_{Y} \circ f_{\sharp} 

(16)重心重分的性质:设 \mathcal{A} 是拓扑空间X的一个子集族,其子集的内部覆盖X,给定p维奇异单形 T: \Delta_{p} \to X ,则存在一个整数m,使得sd^{m}T 中每个奇异单形都是 \mathcal{A} 小的(即奇异单形的像在 \mathcal{A} 的一个元素中)

(17)给定拓扑空间X和整数m,则存在一个同态 D_{X}: S_{p}(X) \to S_{p+1}(X) ,使得对X的每个p维奇异单形 T: \Delta_{p} \to X ,都有 \partial D_{X}T + D_{X} \partial T=sd^{m}T-T ,并且 D_{X} 是自然的,即对任何连续映射 f: X \to Y 都有 f_{\sharp} \circ D_{X}=D_{Y} \circ f_{\sharp} 

(18)重分定理:设 \mathcal{A} 是拓扑空间X的一个子集族,其子集的内部覆盖X,那么重分奇异链复形的包含映射 i: \mathcal{C}^{\mathcal{A}}(X) \to \mathcal{C}(X) 诱导的同态 i_{p}: H_{p}^{\mathcal{A}}(X) \to H_{p}(X) 是一个同构,该结论对约化同调群也成立;

在相对同调中也成立:设B是X的子空间,S_{p}^{\mathcal{A}}(X,B)=S_{p}^{\mathcal{A}}(X)/S_{p}^{\mathcal{A}}(B) ,那么包含映射 i: S_{p}^{\mathcal{A}}(X,B) \to S_{p}(X,B) 诱导的同态 i_{p}: H_{p}^{\mathcal{A}}(X,B) \to H_{p}(X,B) 是一个同构

(19)切除定理:设A是拓扑空间X的子空间,U是X的子集并且 \overline{U} \subset Int\,A,那么包含映射 (X-U, A-U) \to (X,A) 诱导奇异同调群的同构 H_{p}(X-U,A-U) \cong H_{p}(X,A) ;

这说明奇异同调论满足切除公理

这是关于相对同调的一个很有用的定理。它在奇异同调群的计算中很有用,在许多情形下切除一个合适的子空间后更容易计算。或者在许多情形下它使得可以应用归纳法。与长正合同调序列一起,我们可以导出计算同调群的另一个有用的工具Mayer–Vietoris序列

(20)球面的同调群:由切除定理可知相对同调群 H_{p}(B^{n},S^{n-1}) 在 p=n 时为无限循环群(即整数加法群Z),在其他情形时为零 。因此,当p=0或n时 H_{p}(S^{n}) \cong Z ,当 0<p<n 时 H_{p}(S^{n})=0 。另外 S^{0}=\left \{ x \in E^{1} \,|\, \left | x \right |=1 \right \} 由两点-1, 1构成,因此 H_{0}(S^{0}) \cong Z \oplus Z 

(21)零调模定理:设 G,G^{'}: \mathcal{C} \to \mathcal{A} 是从范畴 \mathcal{C}(拓扑空间范畴或拓扑空间偶范畴)到增广链复形范畴 \mathcal{A} 的一对平行函子 ,这里G把对象 X \in ob(\mathcal{C}) 映为增广链复形 ... \to G_{p}(X) \overset{\partial_{p}}{\rightarrow} G_{p-1}(X) \overset{\partial_{p-1}}{\rightarrow} ... \overset{\partial_{1}}{\rightarrow} G_{0}(X) \overset{\varepsilon}{\rightarrow} Z \to 0 ,G_{p}(X) 表示它的p维群,把连续映射 f: X \to Y 映为链映射 f_{\sharp}: G_{p}(X) \to G_{p}(Y) ,\mathcal{U} 是 \mathcal{C} 的对象的一个子集。如果 \mathcal{U} 是函子G的自由模,是函子 G^{'} 的零调模,那么存在G到 G^{'} 的自然变换 T_{X}: G \Rightarrow G^{'} ,即对每个对象 X \in ob(\mathcal{C}) ,有自然变换的分量 T_{X}:G_{p}(X) \to G_{p}^{'}(X) ,它对 \mathcal{C} 中的所有连续映射 f: X \to Y 都有 T_{Y} \circ G(f)=G^{'}(f) \circ T_{X} 。另外,给定两个平行的自然变换 T_{X}, T_{X}^{'}: G \Rightarrow G^{'} ,那么它们之间存在一个自然的链同伦,即对每个p都有一个同态 D_{X}: G_{p}(X) \to G_{p+1}^{'}(X) ,它对 \mathcal{C} 中的所有连续映射 f: X \to Y 都有 D_{Y} \circ G(f)=G^{'}(f) \circ D_{X} 。如果对两个函子 G,G^{'} ,\mathcal{U} 既是自由模也是零调模,那么所有的自然变换 T_{X}:G_{p}(X) \to G_{p}^{'}(X) 都是链等价

(22)Mayer-Vietoris序列:设拓扑空间 X=X_{1} \cup X_{2} ,如果 \left \{ X_{1},X_{2} \right \} 是一个切除对,也即拓扑空间偶的包含映射 i: (X_{1},X_{1} \cap X_{2}) \to (X,X_{2}) 诱导同构 H_{p}(X_{1},X_{1} \cap X_{2}) \cong H_{p}(X,X_{2}) ,那么就有一个正合同调序列

... \to H_{p}(X_{1} \cap X_{2}) \overset{f_{\ast}}{\rightarrow} H_{p}(X_{1}) \oplus H_{p}(X_{2}) \overset{g_{\ast}}{\rightarrow} H_{p}(X) \to H_{p-1}(X_{1} \cap X_{2}) \to ...

称为 \left \{ X_{1},X_{2} \right \} 的梅耶-菲托里斯序列。序列中的同态定义为 f_{\ast}(a)=(i_{\ast}(a), -j_{\ast}(a)), \,\, g_{\ast}(x_{1},x_{2})=k_{\ast}(x_{1})+l_{\ast}(x_{2}) ,其中涉及到的各个映射如下图,都是包含映射( A=X_{1} \cap X_{2} )

如果 X_{1} \cap X_{2} 是非空的,那么在约化同调中也存在类似的正合序列

(23)双角锥的同调群:如果 S(X) 是拓扑空间X上的一个双角锥,那么对所有的p,均有一个约化同调群的同构 \widetilde{H}_{p}(S(K)) \cong \widetilde{H}_{p-1}(K) 

(24)单纯同调与奇异同调的同构:设K是单纯复形,K_{0} 是K的子复形,它们的定向单形到剖分空间奇异单形的链映射为 \eta: C_{p}(K) \to S_{p}(\left | K \right |) ,那么诱导同态 \eta_{\ast}: \widetilde{H}_{p}(K) \to \widetilde{H}_{p}(\left | K \right |) 是单纯同调与奇异同调之间的一个同构;

在相对同调中也成立:链映射 \eta: C_{p}(K,K_{0}) \to S_{p}(\left | K \right |, \left | K_{0} \right |) 诱导的同态 \eta_{\ast}: \widetilde{H}_{p}(K,K_{0}) \to \widetilde{H}_{p}(\left | K \right |,\left | K_{0} \right |) 是一个同构;

(25)同构 \eta_{\ast} 的可交换性质:单纯同调与奇异同调之间的同构 \eta_{\ast}: \widetilde{H}_{p}(K) \to \widetilde{H}_{p}(\left | K \right |) ,与边缘算子 \partial_{p}: C_{p}(K) \to C_{p-1}(K) , \partial_{p}^{'}: S_{p}(\left | K \right |) \to S_{p-1}(\left | K \right |) 诱导的同态 \partial_{\ast}: \widetilde{H}_{p}(K) \to \widetilde{H}_{p-1}(K) ,\partial_{\ast}^{'}: \widetilde{H}_{p}(\left | K \right |) \to \widetilde{H}_{p-1}(\left | K \right |) 可交换 ;与单纯映射 f: K \to L 和连续映射 h: \left | K \right | \to \left | L \right | 分别诱导的同态 f_{\ast}: \widetilde{H_{p}}(K) \to \widetilde{H_{p}}(L) ,h_{\ast}: \widetilde{H_{p}}(\left | K \right |) \to \widetilde{H_{p}}(\left | L \right |) 可交换。这些性质在相对同调中也成立

(26)局部同调群的局部性质:设X是Hausdorff空间,A是点x的一个邻域,即 x \in A \subset X ,那么 H_{p}(X, X-x) \cong H_{p}(A,A-x) 。因此如果 x \in X, y \in Y 分别有邻域U, V使得 (U, x) 与 (V, y) 同伦等价,即 (U,x) \simeq (V,y) ,那么 H_{p}(X,X-x) \cong H_{p}(Y,y) 

(27)欧氏空间的局部同调群:H_{p}(R^{m},R^{m}-x) \cong H_{p}(B,B-x) \cong H_{p}(B^{m},B^{m}-0) \cong H_{p}(B^{m},S^{m-1}) ,因此当 p=m 时是无限循环群,其他情况下为零;

欧氏上半空间的局部同调群:H^{m}=\left \{ (x_{1},...,x_{m}) \,|\, x_{i}\geq 0 \right \} 表示欧氏空间的上半空间,如果 x \in Bd\,H^{m}=R^{m-1} \times 0 ,那么对所有的p,H_{p}(H^{m},H^{m}-x)=0 。如果 x \in H^{m} 且 x \notin Bd \, H^{m} ,那么 H_{p}(H^{m},H^{m}-x) 当 p=m 时是无限循环群,其他情况下为零;

n维流形的局部同调群:H_{n}(M,M-x) \cong Z ,其他情况为零群。H_{n}(M,M-x) 有两个生成元,每个生成元称为M在x处的一个局部定向

(28)带边流形是可三角剖分的:设 s 是复形K的一个单形,如果点 x,y \in Int \, s ,那么它们的局部同调群同构 H_{p}(\left | K \right |,\left | K \right |-x) \cong H_{p}(\left | K \right |, \left | K \right |-y) 。设X是一个m维带边流形,并且连续映射 h: \left | K \right | \to M 是一个同胚,那么 h^{-1}(Bd\, M) 是K的一个子复形的可剖空间。因此同胚 h 是M的三角剖分

(29)复形的维数是拓扑不变量:设K是一个n维复形 ,则局部同调群 H_{p}(\left | K \right |,\left | K \right |-x) 当 p>n 时为零,当 p=n 时 H_{n}(\left | K \right |,\left | K \right |-x) 中至少有一个是非平凡的。因此 n 是唯一的整数使得群 H_{n}(\left | K \right |,\left | K \right |-x) 至少有一个非平凡的,复形K的维数是 \left | K \right | 的拓扑不变量

(30)不分离定理:如果B是 S^{n} 中的任意紧致可缩子空间,则 S^{n}-B 是零调的,即 \widetilde{H}_{p}(X^{n}-B)=0 ,因此B不会分离 S^{n}。特别地,S^{n} 中的任意k维胞腔(即同胚于k维单位球 B^{k} 的空间)都不会分离 S^{n} 。(2维球面下的推广:如果 S^{2} 的两个闭子集 D_{1}, \, D_{2} 都不分离 S^{2} ,并且 S^{2}-(D_{1} \cap D_{2}) 是单连通的,则它们的并 C=D_{1} \cup D_{2} 不分瞎了眼 S^{2} )

(31)设 n>k\geq 0 ,h: S^{k} \to S^{n} 是一个嵌入映射,那么当 i=n-k-1 时 \widetilde{H}_{i}(S^{n}-h(S^{k})) \cong Z ,其他情况下为零

(32)广义Jordan曲线定理:如果C是 S^{n} 中任意同胚于 S^{n-1} 的子空间,那么 S^{n}-C 恰好有两个连通分支 W_{1}, W_{2} ,C是这两个分支的公共拓扑边界,即 C=\overline{W}_{1}-W_{1}=\overline{W}_{2}-W_{2} 。特别地,S^{2} 中的一条简单闭曲线C恰好将 S^{2} 分离成两个连通分支,并且C是它们的公共边界。(2维球面下的推广:如果 S^{2} 的两个连通子集 C_{1}, \, C_{2} 都不分离 S^{2} ,并且只交于两点,则它们的并 C_{1} \cup C_{2} 将 S^{2} 分离成两个分支);

欧氏空间中的Jordan曲线定理:如果C是 R^{n} 中任意同胚于 S^{n-1} 的子空间,那么 R^{n}-C 恰好有两个连通分支 W_{1}, W_{2} ,C是这两个分支的公共拓扑边界

(33)Schoenflies定理:如果C是 S^{2} 中的一条简单闭曲线(即同胚于单位圆周 S^{1} 的空间),W_{1}, W_{2} 是 S^{n}-C 的两个分支,那么 \overline{W}_{1} 和 \overline{W}_{2} 同胚于单位闭球 B^{2} ,即它们都是2维胞腔

(34)Brown-Mazur定理:如果C是 S^{n} 中任意同胚于 S^{n-1} 的子空间,W_{1}, W_{2} 是 S^{n}-C 的两个分支,并且嵌入映射 h: C \to S^{n} 能够被加领,即存在一个嵌入 H:C\times I \to S^{n} 使得 H(x, 1/2)=h(x) 对所有x都成立,那么 \overline{W}_{1} 和 \overline{W}_{2} 同胚于单位闭球 B^{n} ,即它们都是n维胞腔。

注意若嵌入 h: C \to S^{n} 是一个带有极大秩的Jacobi矩阵的可微映射,则加领条件就能满足

(35)区域不变性定理:若U是 R^{n} 中的任意开集,f: U \to R^{n} 是任意连续的单射,则 f(U) 是 R^{n} 中的开集,并且 f 是一个嵌入映射。

这是欧氏空间的一个内蕴性质,数学分析中的反函数定理是在增加了 f 是连续可微并且有非奇异Jacobi矩阵的条件下得到的

(36)商映射的一些分离性质:

设 p: X \to Y 是商映射,如果p是闭映射并且X是正规的,那么Y是正规的;

如果X,Y都是正规空间,那么X的上半连续分解 X^{\ast} 也是正规空间,粘着空间 X \cup_{f} Y 也是正规空间;

如果拓扑空间X是某些子空间 X_{n} 的可数并,X的拓扑关于空间 X_{n} 是凝聚的,每个 X_{i} 是正规的,那么X也是正规的

(37)CW复形的性质:

若CW复形X的胞腔分解为 \left \{ e_{\alpha} \right \} ,那么函数 f: X \to Y 是连续的当且仅当它的每个限制 f|_{\overline{e}_{\alpha}} 是连续的;函数 f: X \times I \to Y 是连续的当且仅当它的每个限制 F|_{\overline{e}_{\alpha} \times I} 是连续的;

CW复形X的任何紧致子集A都只与X的有限多个开胞腔相交,因此A在X的一个有限子复形中;

若K,L是单纯复形,并且K是局部有限的,那么 \left | K \right | \times \left | L \right | 是一个CW复形,其胞腔分解为 \left \{ Int\, \sigma \times Int\, \tau \,|\, \sigma \in K, \tau \in L \right \} ;

若X, Y是CW复形,并且Y是局部紧致的,那么 X \times Y 也是CW复形;

若X, Y是不相交的CW复形,A是X的一个子复形,那么粘着空间 X \cup_{f} Y 也是CW复形,粘着映射 f: A \to X 会把A的每一个p维胞腔映射到Y的一些至多p维的开胞腔的并之中;

若X是CW复形,A是X的可缩子复形,则商映射 p: X \to X/A 是一同伦等价;

若X是CW复形,A是X的可缩子复形,f,g: A \to Y 为一对同伦的映射,那么 X \cup_{f} Y=X \cup_{g} Y 

(38)常见曲面的胞腔分解:

n维球面 S^{n} :它是CW复形,有1个n维开胞腔、1个0维胞腔;

环面 S^{1} \times S^{1} :矩形通过标记表 aba^{-1}b^{-1} 得到的商空间,它是CW复形,有1个2维开胞腔(矩形内部在特征映射下的像)、2个1维开胞腔(矩形开边的像)、1个0维开胞腔(顶点的像);

Klein瓶:矩形区域通过标记表 aba^{-1}b 黏合相应边所得到的空间。它同胚于2-重射影平面 2P^{2} 。它是CW复形,与环面在每个维数下都有相同的开胞腔数;

射影平面 P^{2} :它是单位球面 S^{2} 中等同每一个点 x 和它的对径点 -x 而得到的商空间,由于矩形同胚于单位球面,因此它是矩形通过标记表 abab 得到的空间。它是CW复形,在0, 1, 2每一个维数下都有1个开胞腔;

n-重射影平面 nP^{2} 由 2n (n>1) 条边的多边形区域借助标记表 (a_{1}a_{1})(a_{2}a_{2})...(a_{n}a_{n}) 所得到的空间,称为射影平面的n-重连通和,或简称为n-重射影平面。它是CW复形,有1个2维开胞腔、2n个1维开胞腔、1个0维开胞腔(顶点的像);

n-重环面 nT^{2} 由4n条边的多边形区域借助于标记表 (a_{1}b_{1}a_{1}^{-1}b_{1}^{-1})(a_{2}b_{2}a_{2}^{-1}b_{2}^{-1})...(a_{n}b_{n}a_{n}^{-1}b_{n}^{-1}) 所得到的空间,称为环面的n-重连通和,或简称为n-重环面,数n也称为曲面 nT^{2} 的亏格。它是CW复形,与n-重射影平面有相同的胞腔分解;

n-叠小丑帽:设 n >1 为正整数,r: S^{1} \to S^{1} 是以 2\pi/n 为旋转角的旋转变换,它将点 (cos\theta,sin\theta) 映为点 (cos(\theta+2\pi/n),sin(\theta+2\pi/n)) ,在单位球 B^{2} 内将 S^{1} 中的每一个点x与点 r(x),r^{2}(x),...,r^{n-1}(x) 等同起来,得到的商空间记为X,称X为n-叠小丑帽。它同胚于射影平面 P^{2} ,因此与 P^{2} 有相同的胞腔分解

(39)有限维CW复形与粘着空间同胚:若X是一个p维CW复形,X的每一个p维开胞腔 e_{\alpha} 的特征映射为 f_{\alpha}: B^{p} \to \bar{e}_{\alpha} ,\sum B_{\alpha}=\coprod_{\alpha}B_{\alpha} 是所有p维闭球 B_{\alpha}=B^{p} \times \left \{ \alpha \right \} 的拓扑和,那么X同胚于p-1维骨架 X^{p-1} 与p维闭球拓扑和 \sum B_{\alpha} 的粘着空间,即 X \cong X^{p-1} \cup_{g} \left ( \sum B_{\alpha} \right ) ,其中粘着映射为 g: \sum Bd \, B_{\alpha} \to X^{p-1} ,因而X是正规的。粘着空间的商映射为 \pi: X^{p-1} \cup \left ( \sum B_{\alpha} \right ) \to X 。反之,若Y是一个至多p-1维的CW复形,\sum B_{\alpha} 是p维闭球的拓扑和,g: \sum Bd \, B_{\alpha} \to Y 是一个连续映射,那么粘着空间 Y \cup_{g} \left ( \sum B_{\alpha} \right ) 是一个CW复形,并且Y是它的p-1维骨架

(40)若X是一个CW复形,则对每一个p,骨架 X^{p} 都是 X^{p+1} 的闭子空间,并且X是各个维数的骨架 X^{0} \subset X^{1} \subset ... 的凝聚并,因此X是正规的。反之,若X是诸空间 \left \{ X_{p} \right \}_{p \in J} 的凝聚并,每个 X_{p} 是一个子复形,并且等于 X_{p+1} 的p维骨架,那么X是一个CW复形,并且以 X_{p} 为其p维骨架

(45)若X是CW复形,e_{\alpha} 是X的一个p维开胞腔,那么 e_{\alpha} 的任何特征映射 f_{\alpha}: (B^{p}, S^{p-1}) \to (\bar{e}_{\alpha}, \bar{e}_{\alpha}-e_{\alpha}) 诱导的同态 (f_{\alpha})_{\ast}: H_{i}(B^{p}, S^{p-1}) \to H_{i}(\bar{e}_{\alpha}, \bar{e}_{\alpha}-e_{\alpha}) 是一个同构,由此可知群 H_{p}(\bar{e}_{\alpha}, \bar{e}_{\alpha}-e_{\alpha}) 是无限循环群;

若X是CW复形,\sum B_{\alpha}=\coprod_{\alpha}B_{\alpha} 是所有p维闭球 B_{\alpha}=B^{p} \times \left \{ \alpha \right \} 的拓扑和,商映射 \pi: X^{p-1} \cup \left ( \sum B_{\alpha} \right ) \to X 把X表示成与其同构的粘着空间即 X \cong X^{p-1} \cup_{g} \left ( \sum B_{\alpha} \right ) ,其中粘着映射为 g: \sum Bd \, B_{\alpha} \to X^{p-1} ,那么 𝛑 诱导的同态 \pi_{\ast}: H_{i}(\sum B_{\alpha}, \sum Bd\, B_{\alpha}) \to H_{i}(X^{p},X^{p-1}) 是一个同构

(46)CW复形的胞腔链群:若X是CW复形,\sum B_{\alpha}=\coprod_{\alpha}B_{\alpha} 是所有p维闭球 B_{\alpha}=B^{p} \times \left \{ \alpha \right \} 的拓扑和,那么 H_{i}(X^{p},X^{p-1}) \cong H_{i}(\sum B_{\alpha}, \sum Bd\, B_{\alpha}) \cong \bigoplus_{\alpha}H_{i}(B_{\alpha}, Bd \, B_{\alpha}) 。因此 i \neq p 时胞腔链群 H_{i}(X^{p},X^{p-1}) 为零, i=p 时 H_p(X^{p},X^{p-1}) \cong \bigoplus_{\alpha}Z ,它是自由Abel群。如果元素b生成 H_{p}(X^{p},X^{p-1}) ,那么当 f_{\alpha} 遍历X的p维胞腔特征映射的一个集合时,元素 (f_{\alpha})_{\ast}(b) 组成 H_{p}(X^{p},X^{p-1}) 的一个基

(47)射影空间的胞腔分解:

实射影空间 RP^{n} 和 RP^{\infty} 分别为n维和无穷维CW复形,在每个 j 维数下(对 RP^{n} 为 0\leq j\leq n )恰有1个开胞腔,并且它的 j 维骨架是实射影空间 P^{j} ;

复射影空间 CP^{n} 和 RP^{\infty} 分别2n维和无穷维CW复形,在每个偶数 2j 维数下(对 CP^{n} 为 0\leq 2j \leq 2n)恰有1个开胞腔,并且 CP^{j} 是它的 2j 维骨架

(48)紧致曲面(2维紧致流形)和射影空间的同调群:

0维单点集:H_{0}(X)\cong Z ;

环面 T^{2}=S^{1} \times S^{1} :H_{0}(T^{2}) \cong H_{2}(T^{2}) \cong Z, \, H_{1}(T^{2}) \cong Z \oplus Z ;

Klein瓶:H_{0}(X) \cong Z, \, H_{1}(X) \cong Z \oplus Z/2, \, H_{2}(X)=0 ;

n重环面 nT^{2} :当 p=0或2 时 H_{p}(nT^{2}) \cong Z ,当p=1时 H_{p}(nT^{2}) \cong \bigoplus_{i=1}^{2n}Z ,即秩为2n的自由Abel群;

m重射影平面 mP^{2} :当 p=0 时 H_{p}(mP^{2}) \cong Z ,当 p=1 时 H_{p}(mP^{2}) \cong \left ( \bigoplus_{i=1}^{m-1}Z \right ) \oplus Z/2 ,当 p=2 时 H_{p}(mP^{2}) =0 。可见2重射影平面 2P^{2} 与Klein瓶是同胚的;

n维球面 S^{n}(n>0) :当p=0或n时 H_{p}(S^{n}) \cong Z ,当 0<p<n 时 H_{p}(S^{n})=0 。另外 S^{0}=\left \{ x \in E^{1} \,|\, \left \| x \right \|=1 \right \} 由两点-1, 1构成,因此 H_{0}(S^{0}) \cong Z \oplus Z ;

n维实射影空间 P^{n} (n>1) :当 p=0 或者 p=n 且为奇数时 H_{p}(P^{n}) \cong Z ,当 0<p<n 且为奇数时 H_{p}(P^{n}) \cong Z/2 ,当p为偶数时 H_{p}(P^{n})=0 。当 p=0 时 H_{p}(P^{\infty}) \cong Z ,当p为奇数时 H_{p}(P^{\infty}) \cong Z/2 ,当p为非负偶数时 H_{p}(P^{\infty}) = 0 。特别地,对2维射影平面 H_{0}(P^{2}) \cong Z, \, H_{1}(P^{2}) \cong Z/2, \, H_{2}(P^{2})=0 ;

复射影空间 CP^{n} :当p是偶数且 0\leq p\leq 2n 时 H_{p}(CP^{n}) \cong Z ,其他情况下为零群。当p是非负偶数时 H_{p}(CP^{\infty}) \cong Z ,其他情况下为零群

(49)透镜空间的同调群:透镜空间L(n, k)是一个CW复形,在0,1,2,3每一个维数下各有一个开胞腔。它的同调群为 H_{0}(L(n,k)) \cong H_{3}(L(n,k)) \cong Z ,H_{1}(L(n,k)) \cong Z/n ,H_{2}(L(n,k))=0 (规定 Z/1=1, Z/0=Z )。可见n与m不相等时L(n, k) 与 L(m, q) 不可能同伦等价

(50)透镜空间的分类:两个透镜空间同伦等价 L(p_{1},q_{1}) \simeq L(p_{2},q_{2}) 当且仅当 p_{1}=p_{2} 。两个透镜空间同胚 L(p_{1},q_{1}) \cong L(p_{2},q_{2}) 当且仅当 p_{1}=p_{2} ,并且 q_{1}\equiv \pm q_{2}(mod \, p_{1}) 或者 q_{1}q_{2} \equiv \pm 1(mod \, p_{1}) 。特别地,L(1,0)=S^{3}, \, L(0,1)=S^{2} \times S^{1}, \, L(1,q) \cong S^{3} 

(51)常见空间的Euler示性数:

n重环面 nT^{2} :\chi(nT^{2})=2-2n 

m重射影平面 mP^{2} :\chi(mP^{2})=2-m 

n维球面 S^{n} :n为奇数时 \chi(S^{n})=0 ,n为偶数时 \chi(S^{n})=2 ;

n维实射影空间 P^{n} (n>1) :n为奇数时 \chi(P^{n})=0 ,n为偶数时 \chi(P^{n})=1 ; 

复射影空间 CP^{n} :\chi(CP^{n})=1+n 

(52)Euler示性数的同伦不变性:如果拓扑空间之间的连续映射 f: X \to Y 是一个同伦等价,那么 \chi(X)=\chi(Y) 

(53)紧致连通曲面分类定理:若X是紧致连通曲面(即紧致连通不带边的2维流形),则X同胚于定向的球面 S^{2} 、定向的n-重环面 nT^{2}、或不可定向的m-重射影平面 mP^{2} 。进一步如果X是定向的,则 \chi(X) 且是偶数,并且 X \cong nT^{2}, \, \chi(X)=2-2n \leq 2 ,当n=0时 X \cong S^{2}, \, \chi(X)=2 ;如果 \chi(X) 是奇数 ,则X是不可定向的,并且 X \cong mP^{2}, \, \chi(X)=2-m \leq 1 

(54)设 (X, A) 是空间偶,如果 \chi(X), \chi(A), \chi(X,A) 中两个有定义,那么第三个也有定义,且 \chi(X)=\chi(A)+\chi(X,A) 

(55)对有限复形或多面体K,Euler示性数可以用各维数的单形个数(即单纯链群的秩)来计算:

 \chi(K)=\sum_{p=0}^{\infty}(-1)^{p} \, rank(C_{p}(K)) 

对有限CW复形X,Euler示性数可以用各维数的胞腔个数 \alpha_{p} 来计算,其中 \alpha_{0} 表示胞腔粘合开始时的顶点个数:

\chi(X)=\sum_{p=0}^{\infty}(-1)^{p} \, \alpha_{p} 

(56)Gauss-Bonnet公式:设M是三维欧氏空间 E^{3} 中紧致无边的定向曲面,K是M的Gauss曲率,则

\chi(M)=\frac{1}{2\pi}\int_{M}K \, d\sigma 

其中 d\sigma 是M上定向体积元。这一公式可以推广到高维的Riemann流形上

(57)用Morse函数计算微分流形的Euler示性数:若M是一个紧致无边的微分流形,n=dim \, M ,f: M \to R 是M上的Morse函数,则

 \chi(M)=\sum_{i=0}^{n}(-1)^{i}c_{i} 

其中 c_{i} 是Morse函数 f 的指数为 i 的临界点个数

 

 

参考书籍:

(1)代数拓扑基础:James R.Munkres

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值