群同态基本定理证明_近世代数(3)——群的基本性质

5ee9bd1a7fe3d8412c7d3a4882b52dd5.png

参考教材

  • 《近世代数》.丘维声著
  • 《近世代数》.韩士安著
  • 《Algebra》.Artin著
  • 《代数学引论》.聂灵沼.丁石孙著

前言

上节我们引入了循环群的概念,并且为了分类循环群,我们将在本文引入同构的概念,同构是一个非常强的条件,它的引入将使我们研究群更加的简单,对于复杂抽象的群我们只需要去解剖跟它同构的简单直观的群即可.换言之,这两个群具有相同的结构.

我将按照我自己学习的理解去编排内容,在讲解以后更深的群论内容时可以更加的自然且有动机,我也尽力去通过自己的理解去一步步讨论,让概念的引入更加的自然和富有动机,以下是目录(括号内是一些有趣或重要的定理方便指引).

5c153838abd71bfb6f15fbe0668b5bb5.png
关系图

目录

  1. 群同构
  2. n元对称群
  3. 子群(Cayley定理)
  4. 陪集(Lagrange定理)
  5. 群同态
  6. 正规子群
  7. 商群
  8. 群同态基本定理

1.群同构

定义:

是两个群,如果有一个
的一一对应(双射)
,它满足:

则称
同构于
,记作
.

例:数域

维线性空间上的全体可逆线性变换同构于

例:

例:任意一个无限群与
同构,构建映射如下:

例:对于
,任意一个
阶循环群与
同构,构建映射如下:

例:
阶循环群与加法群
同构

注:

  • 具体的证明只需要按照定义,证明其是映射,单射,双射,满足结构即可.
  • 群同构是一个等价关系,我们通过同构将所有循环群组成的集合进行了划分,对于一般的循环群或许会很抽象,但是对于
    ,确实非常具体且容易理解的.

定理:

是群
的一个同构映射,
分别是
的单位元,
中任意元素.则有
  1. 是可逆映射,其可逆映射
    也是
    的同构映射

证:

(1)对任意的

,有
,且根据同构定义

两边右乘

得到
.

(2)对任意的

,有
,且根据同构定义

两边右乘

得到
.

(3)因为

是双射,因此其逆映射也是双射,且保持运算.

我们研究了

的同构,那如果
时会如何?于是讨论如下:

定义:

群到自身的同构成为自同构

通过这个定义,很自然的想到对于一个群

,存在一个集合,它包含了
的所有自同构映射,显然满足结合律,且存在恒等同构:
并且任何一个自同构都存在一个逆映射,它也是一个自同构,这就说明这个集合是一个运算为乘法的群,记作
.

观察自同构群的定义可以发现这些条件还是很苛刻的,即要求对象是群还要是同构映射,倘若我们放宽限制,考虑一个非空集合

到自身的所有双射组成的集合,同样的方法我们依然可以发现这个集合是一个群,称它为集合
全变换群,记作
,特别情况,当
为有限集合时,
中的元素称为
置换,为了方便起见,我们可以将集合
个元素都用编号
来代替,即
,则称这时的
元对称群,记作
  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值