机器学习基石笔记-Lecture 14 Regularization

正则化的思想,引入的方式:想改善高阶假设空间overfitting的状况,从高阶退回低阶,即限制w的某些维度使之为零。

通过放宽限制和使用软约束(softer constraint),问题改写成:

 

那如何求解右边的有约束最优化问题呢?

首先把Ein写成矩阵形式

 

如果没有约束,最优解就是linear regression的解,有约束后,w只能在红色的圆圈里面。

本来w应该沿着负梯度的方向移动,但是它不能移出圆圈,就是不能在 红线(normal)方向上移动。

因此将负梯度方法沿着normal做分解,w只能沿着绿色的箭头移动。什么时候w不能再移动了呢(就是不能再下降了),就是负梯度与normal平行的时候。那么这个时候的w就是问题的解。

最后问题演化成求w,使得

如果lamda已知,那么w可求得

 

另外来看,求解 可以等价于求解最小化问题

后面加上的这项就叫做正则项。

 

正则化和VC理论的联系

这里通过对最小化Ein的等价问题 Eaug 的求解,来保证VC bound.

 

Eaug的正则项可以看成是单个h的复杂度的惩罚

 

在有约束的假设空间H(C)中,w被限制了,这个空间的vc维要低于原始空间。

 

常用的正则项:L2和L1

L1正则的最优求解思路和L2是一样的,最优解会出现在角上,这样w在一些维度上为0,起到了特征选择的作用。

 

关于lamda的选择,和噪音大小有关。噪音大的话lamda也要大一些。但是通常我们并不知道噪音多大。。(下节讲到做validation)

 

转载于:https://www.cnblogs.com/akanecode/p/7054668.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值