【论文复现】FastDVDNet: Towards Real-Time Video Denoising Without Explicit Motion Estimation

0.Links

已开源 FastDVDNet: https://github.com/z-bingo/FastDVDNet
知乎专栏:https://zhuanlan.zhihu.com/p/73286010

1. Introduction

FastDVDNet是一种视频去噪中的STOA方法,与其他STOA方法有着相近或者更好的性能,但是有着更低的时间复杂度。
计算机视觉中,对于视频去噪的研究相对较少,大多方法还是基于传统的算法,如VBM4D等non-local的方法,还有一些方法是图像去噪方法的简单扩展。由于视频有着较强的时间相关性,那么一个好的视频去噪算法必将要充分利用这一特点。利用时间相关性主要体现为两个方面:

  1. 对于给定的patch,不仅要在同一帧的相邻区域搜索像素的patch,也要在时间相近的frame上进行搜索;
  2. 使用相邻时间的frame还可以有效减少flockering,因为每一帧之间的残余就会是相关的。

为了解决motion带来的对齐困难问题,DVDNet中使用光流进行了显式的估计,但是光流的计算是比较耗时的,即便是快速算法也是如此。对于encoder-decoder结构的U-Net,其本身具有在感受也范围内对齐的功能,因此,在FastDVDNet中采用了这种做法,也就提高了性能。

2. Network Architecture

Architecture of FastDVDNet
Fig. 1是FastDVDNet是结构图,通常连续5帧和一个噪声的估计一起作为网络的输入,从网络的top view来看FastDVDNet是一个two-stage的结构,5帧图像分为三组作为Block1的输入,三个Block1的输出又作为Block2的输入。其中,三个Block1共享参数,Block1和Block2有着相同的结构,如Fig. 1(b),是一个修改版的U-Net网络。值得注意的是,相较于original U-Net,此处的网络有2个下采样层(U-Net有4个),且下采样并非通过pool来实现,而是通过stride为2的Conv层实现的;此外,上采样也没有通过Bilinear插值或deconv来实现,而是通过PixelShuffle来实现。相较于DVDNet,FastDVDNet的结构就非常简单了。

3. Loss Function

在图像/视频去噪领域中,L1 Loss使用较多,因为L1 Loss可以保护去噪后图像的整体信息;较为不同的是,FastDVDNet使用了L2 Loss。

4. Results and Analysis

已经使用PyTorch复现了改论文,没有使用文中使用的DAVIS数据集,而是使用了Vimeo-90K数据集,该数据集专用于图像增强等领域,包含了接近90K组图像帧,每组数据为7帧,每帧图像分辨率为448*256。目前,网络正在训练中,后续(本月中旬)会将训练好的模型上传至github,代码现已开源至我的github,欢迎各位批评指正!

由于训练尚未结束,暂不讨论该模型在Vimeo-90K数据集上的表现能力,先讨论其在DAVIS数据集上、噪声为加性高斯噪声(AWGN)时的去噪性能。

4.1 two-stage结构必要性

如Fig. 1所示,FastDVDNet采用了two-stage结构,连续5帧图像首先分为三组右Block 1提取特征,进而,三个共享参数的Block 1的输出作为Block 2的输出进一步地提取特征、去噪。若该two-stage结构对于去噪任务是冗余的,那么,将two-stage结构改为single-stage后,模型性能应几乎保持不变。文中给出了相关的数据说明,假设FastDVDNet采用Fig. 3所示的single-stage结构,即,五帧图像连接在一起作为一个Block模块的输入,这无疑在很大程度上减少了学习参数,但Table 1中的数据表明,参数减少带来的结果是性能下降。
single-stage FastDVDNet
Table 1

4.2 encoder-decoder结构必要性

encoder-decoder结构是一种典型的multi-scale结构,可以在不同的scale提取图像的特征,增大图像感受野。在近年来对于图像去噪的研究中,encoder-decoder结构的模型也占了多数,但是也不乏有single-scale结构的网络,如经典的DnCNN也有着很好的性能。文中,也通过实验来证明了encoder-decoder结构的必要性,实验结果如Table 2所示。
Table 2

4.3 结果分析

Fig. 4
Fig. 5
Fig. 6
Fig. 4 ~ Fig. 6是几组不同算法和FastDVDNet的对比图,Fig. 4中(d)为FastDVDNet的去噪结果图,Fig. 5和Fig. 6中(h)为FastDVDNet的去噪效果图,将图片方法观察其细节,可见,DVDNet和FastDVDNet去噪后的图像细节保存较好,边缘比较平滑。

References

[1] FastDVDNet:ToWards Real-Time Video Denoising Without Explicit Motion Estimation
[2] DVDNet: A Fast Network For Deep Video Denoising
[3] PyTorch
[4] Vimeo-90K

  • 4
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值