bzoj2935 [Poi1999]原始生物——欧拉回路

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2935

考察欧拉回路性质的题目呢;

TJ:https://blog.csdn.net/u014609452/article/details/53705451

首先按照题目给出的点对连边,发现能一连串输出的数组成一条路径;

那么答案就是图的最小路径覆盖的点数,可以考虑欧拉回路;

连通块之间分别考虑,如果连通块存在欧拉回路,那么覆盖它需要边数+1的点;

如果不存在欧拉回路,那么加上 度数绝对值和/2 条边构成欧拉回路,然后再任意删去一条,形成欧拉路,答案就是边数;

找连通块用并查集即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int const maxn=1005;
int n=1000,m,k,sum,ans,fa[maxn],deg[maxn];
bool vis[maxn],tag[maxn];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
    scanf("%d",&m);
    for(int i=1;i<=n;i++)fa[i]=i;
    for(int i=1,x,y;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        deg[x]++; deg[y]--; vis[x]=1; vis[y]=1;
        fa[find(x)]=find(y);
    }
    for(int i=1;i<=n;i++)
        if(vis[i]&&deg[i])tag[find(i)]=1,sum+=(deg[i]>0)?deg[i]:-deg[i];
    for(int i=1;i<=n;i++)
        if(vis[i]&&find(i)==i&&!tag[i])k++;//此连通块没有度数非0的点,也就是存在欧拉回路,+1 
    ans=k+sum/2+m;
    printf("%d",ans);
    return 0;
}

 

转载于:https://www.cnblogs.com/Zinn/p/9282187.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值