Legendre polynomials

LegendreP

In mathematics, Legendre functions are solutions to Legendre's differential equation:

{d \over dx} \left[ (1-x^2) {d \over dx} P_n(x) \right] + n(n+1)P_n(x) = 0.

In particular, it occurs when solving Laplace's equation (and relatedpartial differential equations) in spherical coordinates.

legendre1.gif

The polynomials may be denoted by Pn(x) , called the Legendre polynomial of order n. The polynomials are either even or odd functions of x for even or odd orders n. The first few polynomials are shown below.

legendre2.gif

The general form of a Legendre polynomial of order n is given by the sum:

legendre3.gif

From the Legendre polynomials can be generated another important class of functions for physical problems, the associated Legendre functions.

转载于:https://www.cnblogs.com/hiramlee0534/p/5539709.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值