介绍
正交多项式是数学中一类具有特殊性质的多项式。假设我们有一个权重函数
μ
(
x
)
\mu(x)
μ(x),它在某个区间
[
a
,
b
]
[a, b]
[a,b] 上是非负的。对于两个函数
f
(
x
)
f(x)
f(x) 和
g
(
x
)
g(x)
g(x),我们可以定义它们的加权内积为:
⟨
f
,
g
⟩
=
∫
a
b
f
(
x
)
g
(
x
)
d
μ
(
x
)
\langle f, g \rangle = \int_{a}^{b} f(x)g(x)d\mu(x)
⟨f,g⟩=∫abf(x)g(x)dμ(x)
如果对于两个不同的多项式
p
n
(
x
)
p_n(x)
pn(x) 和
p
m
(
x
)
p_m(x)
pm(x),它们满足:
⟨
p
n
,
p
m
⟩
=
0
\langle p_n, p_m \rangle = 0
⟨pn,pm⟩=0
当且仅当
m
≠
n
m \neq n
m=n 时,我们称这两个多项式是彼此正交的。
正交多项式序列
p
n
(
x
)
{ p_n(x) }
pn(x) 是一组多项式,其中
p
n
(
x
)
p_n(x)
pn(x) 是
n
n
n 次的,这个序列满足以下条件:
- p n ( x ) p_n(x) pn(x) 是 n n n次的。
- p n ( x ) p_n(x) pn(x) 和 p m ( x ) p_m(x) pm(x)在区间 [ a , b ] [a, b] [a,b]上关于权重函数 w ( x ) w(x) w(x) 正交。
这意味着,对于序列中任意两个不同次数的多项式
p
n
p_n
pn 和
p
m
p_m
pm,它们的加权内积为零。
正交多项式在数学的许多领域都有应用,比如近似理论、数值分析、物理学中的量子力学和谱方法求解微分方程等。它们的正交性质使得它们在这些领域中非常有用,因为它们可以构成一个函数空间的正交基,便于进行函数的展开和系数计算。
一些著名的正交多项式包括:
- 勒让德多项式(Legendre Polynomials):在区间 [ − 1 , 1 ] [-1, 1] [−1,1] 上关于常数权重函数的正交多项式。
- 拉盖尔多项式(Laguerre Polynomials):在区间 [ 0 , ∞ ) [0, \infty) [0,∞) 上关于 e − x e^{-x} e−x 作为权重函数的正交多项式。
- 切比雪夫多项式(Chebyshev Polynomials):在区间 [ − 1 , 1 ] [-1, 1] [−1,1]上关于权重函数 ( 1 − x 2 ) − 1 / 2 (1-x^2){-1/2} (1−x2)−1/2 的正交多项式。
- 赫米特多项式(Hermite Polynomials):在整个实数线上关于权重函数 e − x 2 e{-x^2} e−x2 的正交多项式。
这些正交多项式都有自己的递推关系,特殊的性质和积分表达式。它们是解析方法和数值方法中的重要工具。
勒让德多项式(Legendre Polynomials)
勒让德多项式(Legendre Polynomials)是一类定义在区间 [ − 1 , 1 ] [-1, 1] [−1,1] 上的多项式,它们构成了在这个区间上带权重 w ( x ) = 1 w(x) = 1 w(x)=1 的连续函数的一个正交基。勒让德多项式被广泛用于物理学(尤其是在求解具有球对称性的问题时,比如在电磁学和量子力学中)和数学的各个领域,如数值分析、逼近论等。
定义
勒让德多项式可以通过多种方法定义,包括罗德里格斯公式(Rodrigues’ formula)、递推关系、正交性质等。其中,罗德里格斯公式给出了勒让德多项式的一个直接构造:
P
n
(
x
)
=
1
2
n
n
!
d
n
d
x
n
[
(
x
2
−
1
)
n
]
P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[ (x^2 - 1)^n \right]
Pn(x)=2nn!1dxndn[(x2−1)n]
这里,
P
n
(
x
)
P_n(x)
Pn(x)表示第
n
n
n 阶的勒让德多项式,
n
n
n 是非负整数。
正交性
勒让德多项式满足下列的正交性质,这是它们在数学中如此重要的原因之一:
∫
−
1
1
P
m
(
x
)
P
n
(
x
)
d
x
=
0
当
m
≠
n
\int_{-1}^{1} P_m(x) P_n(x) dx = 0 \quad \text{当} \quad m \neq n
∫−11Pm(x)Pn(x)dx=0当m=n
当
m
=
n
m = n
m=n 时,上式不等于零,而是等于:
∫
−
1
1
P
n
2
(
x
)
d
x
=
2
2
n
+
1
\int_{-1}^{1} P_n^2(x) dx = \frac{2}{2n + 1}
∫−11Pn2(x)dx=2n+12
这表明勒让德多项式在区间
[
−
1
,
1
]
[-1, 1]
[−1,1] 上是彼此正交的。
递推关系
勒让德多项式还满足以下递推关系:
(
n
+
1
)
P
n
+
1
(
x
)
=
(
2
n
+
1
)
x
P
n
(
x
)
−
n
P
n
−
1
(
x
)
(n + 1) P{n+1}(x) = (2n + 1) x P_n(x) - n P{n-1}(x)
(n+1)Pn+1(x)=(2n+1)xPn(x)−nPn−1(x)
递推关系使得计算高阶勒让德多项式变得简单,因为它可以通过较低阶的两个勒让德多项式来表达。
标准化
通常,勒让德多项式在 x = 1 x = 1 x=1 处被规范化为 1,即 P n ( 1 ) = 1 P_n(1) = 1 Pn(1)=1。这是因为 P n ( x ) P_n(x) Pn(x)是一个 n n n阶多项式,它的最高阶项系数为 1 1 1。这种规范化有时在数值计算中是有用的。
应用
勒让德多项式在解决物理问题中非常有用,尤其是在求解拉普拉斯方程(Laplace’s equation)和波动方程(wave equation)时,如果问题具有球对称性,经常会用到勒让德多项式。因为在球坐标系下,这些方程的解经常可以分解为径向部分和角部分,后者可以用勒让德多项式来表示。
此外,勒让德多项式也在数值分析中广泛应用,例如在高斯勒让德积分(Gaussian-Legendre quadrature)中,勒让德多项式的根被用作积分节点,这是一种计算定义在
[
−
1
,
1
]
[-1, 1]
[−1,1]区间上的函数积分的高效方法。
拉盖尔多项式(Laguerre Polynomials)
拉盖尔多项式(Laguerre Polynomials)是一组在数学物理中广泛使用的正交多项式。它们主要出现在量子力学和数值分析的问题中,特别是在求解涉及指数权重函数的问题时。这些多项式是以法国数学家埃德蒙·拉盖尔(Edmond Laguerre)的名字命名的。
定义
拉盖尔多项式可以通过罗德里格斯公式给出,对于非负整数
n
n
n,第
n
n
n 阶拉盖尔多项式
L
n
(
x
)
L_n(x)
Ln(x) 定义为:
L
n
(
x
)
=
e
x
n
!
d
n
d
x
n
(
e
−
x
x
n
)
L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^n)
Ln(x)=n!exdxndn(e−xxn)
也就是说,是对函数
e
−
x
x
n
e^{-x} x^n
e−xxn 进行
n
n
n 次微分后,乘以
e
x
e^x
ex 并除以
n
!
n!
n!。
正交性
拉盖尔多项式在带有权重函数
e
−
x
e^{-x}
e−x 的区间
[
0
,
∞
)
[0, \infty)
[0,∞)上是正交的。具体来说,对于两个不同的非负整数
m
m
m 和
n
n
n,它们满足:
∫
0
∞
e
−
x
L
m
(
x
)
L
n
(
x
)
d
x
=
0
当
m
≠
n
\int_{0}^{\infty} e^{-x} L_m(x) L_n(x) dx = 0 \quad \text{当} \quad m \neq n
∫0∞e−xLm(x)Ln(x)dx=0当m=n
而对于 (m = n),积分的结果是:
∫
0
∞
e
−
x
L
n
2
(
x
)
,
d
x
=
1
2
n
+
1
\int_{0}^{\infty} e^{-x} L_n^2(x) , dx = \frac{1}{2n+1}
∫0∞e−xLn2(x),dx=2n+11
递推关系
拉盖尔多项式满足以下递推关系,这可以用来高效地计算多项式序列:
- 升阶递推关系:
( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 − x ) L n ( x ) − n L n − 1 ( x ) (n+1) L{n+1}(x) = (2n+1-x) L_n(x) - n L{n-1}(x) (n+1)Ln+1(x)=(2n+1−x)Ln(x)−nLn−1(x) - 降阶递推关系:
x d d x L n ( x ) = n L n ( x ) − n L n − 1 ( x ) x \frac{d}{dx}L_n(x) = nL_n(x) - nL_{n-1}(x) xdxdLn(x)=nLn(x)−nLn−1(x)
应用
在物理学中,拉盖尔多项式尤其在量子力学中扮演着重要角色。例如,在解析氢原子的薛定谔方程时,径向波函数的解可以表示为拉盖尔多项式的形式。在数值分析中,拉盖尔多项式用于拉盖尔-高斯求积法(Laguerre-Gauss quadrature),这是一种计算带有 e − x e^{-x} e−x衰减因子的函数在 [ 0 , ∞ ) [0, \infty) [0,∞) 区间上积分的有效方法。
标准化
拉盖尔多项式通常按照积分正交性进行标准化,但在不同的文献中,有时会看到不同的标准化方式。某些情况下,它们会被进一步规范化,使得其在
x
=
0
x=0
x=0 的值为
1
1
1。
这些多项式的一个相关的概念是广义拉盖尔多项式(也称为伴随拉盖尔多项式),它们涉及一个额外的参数,用于描述更一般的权重函数
x
α
e
−
x
x^{\alpha}e^{-x}
xαe−x。这些广义多项式在解决物理问题时也非常有用。
切比雪夫多项式(Chebyshev Polynomials)
切比雪夫多项式(Chebyshev Polynomials)是一系列在数学和工程学中非常重要的正交多项式。它们有两组,通常称为第一类切比雪夫多项式 T n ( x ) T_n(x) Tn(x) 和第二类切比雪夫多项式 U n ( x ) U_n(x) Un(x)。这些多项式以俄国数学家帕夫诺提·切比雪夫命名,他在多项式逼近理论方面做出了重要的贡献。
第一类切比雪夫多项式
第一类切比雪夫多项式
T
n
(
x
)
T_n(x)
Tn(x)在区间
[
−
1
,
1
]
[-1, 1]
[−1,1]上正交,并对应于权重函数
w
(
x
)
=
1
1
−
x
2
w(x) = \frac{1}{\sqrt{1-x^2}}
w(x)=1−x21。这些多项式在
x
=
cos
(
θ
)
x = \cos(\theta)
x=cos(θ) 时可以由下面的三角形式定义:
T
n
(
x
)
=
cos
(
n
arccos
(
x
)
)
T_n(x) = \cos(n \arccos(x))
Tn(x)=cos(narccos(x))
对于非负整数
n
n
n,第
n
n
n 阶的第一类切比雪夫多项式可以通过下面的罗德里格斯式给出:
T
n
(
x
)
=
n
2
∑
k
=
0
⌊
n
/
2
⌋
(
−
1
)
k
(
n
−
k
−
1
)
!
k
!
(
n
−
2
k
)
!
(
2
x
)
n
−
2
k
T_n(x) = \frac{n}{2} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{(n-k-1)!}{k! (n-2k)!} (2x)^{n-2k}
Tn(x)=2n∑k=0⌊n/2⌋(−1)kk!(n−2k)!(n−k−1)!(2x)n−2k
这些多项式的正交性质由以下关系给出:
∫
−
1
1
T
m
(
x
)
T
n
(
x
)
1
−
x
2
d
x
=
{
0
if
m
≠
n
,
π
if
m
=
n
=
0
,
π
2
if
m
=
n
≠
0.
\int_{-1}^{1} \frac{T_m(x) T_n(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & \text{if } m \neq n, \\ \pi & \text{if } m = n = 0, \\ \frac{\pi}{2} & \text{if } m = n \neq 0. \end{cases}
∫−111−x2Tm(x)Tn(x)dx=⎩
⎨
⎧0π2πif m=n,if m=n=0,if m=n=0.
第二类切比雪夫多项式
第二类切比雪夫多项式
U
n
(
x
)
U_n(x)
Un(x) 同样在区间
[
−
1
,
1
]
[-1, 1]
[−1,1] 上正交,但对应的权重函数是
w
(
x
)
=
1
−
x
2
w(x) = \sqrt{1-x^2}
w(x)=1−x2。它们可以由下面的三角形式定义:
U
n
(
x
)
=
sin
(
(
n
+
1
)
arccos
(
x
)
)
1
−
x
2
U_n(x) = \frac{\sin((n+1) \arccos(x))}{\sqrt{1-x^2}}
Un(x)=1−x2sin((n+1)arccos(x))
对于非负整数
n
n
n,第
n
n
n 阶的第二类切比雪夫多项式可以通过下面的公式表示:
U
n
(
x
)
=
∑
k
=
0
⌊
n
/
2
⌋
(
−
1
)
k
(
n
−
k
)
!
k
!
(
n
−
2
k
)
!
(
2
x
)
n
−
2
k
U_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{(n-k)!}{k! (n-2k)!} (2x)^{n-2k}
Un(x)=∑k=0⌊n/2⌋(−1)kk!(n−2k)!(n−k)!(2x)n−2k
第二类切比雪夫多项式的正交性质由以下关系给出:
∫
−
1
1
U
m
(
x
)
U
n
(
x
)
1
−
x
2
d
x
=
{
0
if
m
≠
n
,
π
2
if
m
=
n
.
\int_{-1}^{1} U_m(x) U_n(x) \sqrt{1-x^2} dx = \begin{cases} 0 & \text{if } m \neq n, \\ \frac{\pi}{2} & \text{if } m = n. \end{cases}
∫−11Um(x)Un(x)1−x2dx={02πif m=n,if m=n.
递推关系
切比雪夫多项式还满足以下递推关系,这使得它们在实际计算中非常方便:
- 第一类的递推关系:
T n + 1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) Tn+1(x)=2xTn(x)−Tn−1(x) - 第二类的递推关系:
U n + 1 ( x ) = 2 x U n ( x ) − U n − 1 ( x ) U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x) Un+1(x)=2xUn(x)−Un−1(x)
应用
切比雪夫多项式在近似理论、数值分析、工程设计等许多领域都有广泛的应用。由于它们具有极小极大性质,第一类切比雪夫多项式常用于多项式逼近的切比雪夫逼近问题和设计最优滤波器。第二类切比雪夫多项式则经常出现在求解特定类型的微分方程的解析解中。此外,它们还用于构造切比雪夫点,这在数值积分(如高斯-切比雪夫积分)和插值中十分重要。
赫米特多项式(Hermite Polynomials)
赫米特多项式(Hermite Polynomials)是一类在数学和物理领域均有广泛应用的正交多项式。在物理学中,它们尤其在量子力学中描述量子谐振子的波函数中扮演重要角色。赫米特多项式以法国数学家查尔·赫米特(Charles Hermite)的名字命名。
定义
赫米特多项式可以通过罗德里格斯公式来定义,对于非负整数
n
n
n,第
n
n
n阶赫米特多项式
H
n
(
x
)
H_n(x)
Hn(x) 定义为:
H
n
(
x
)
=
(
−
1
)
n
e
x
2
d
n
d
x
n
(
e
−
x
2
)
H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2})
Hn(x)=(−1)nex2dxndn(e−x2)
这个公式表明,赫米特多项式 H n ( x ) H_n(x) Hn(x) 是 e − x 2 e^{-x^2} e−x2 的 n n n 次导数,乘以 e x 2 e^{x^2} ex2并乘以一个 ( − 1 ) n (-1)^n (−1)n 的因子。
正交性
赫米特多项式在带有权重函数
w
(
x
)
=
e
−
x
2
w(x) = e^{-x^2}
w(x)=e−x2的整个实数线上是正交的。这意味着对于两个不同的非负整数
m
m
m和
n
n
n:
∫
−
∞
∞
e
−
x
2
H
m
(
x
)
H
n
(
x
)
d
x
=
0
当
m
≠
n
\int_{-\infty}^{\infty} e^{-x^2} H_m(x) H_n(x) dx = 0 \quad \text{当} \quad m \neq n
∫−∞∞e−x2Hm(x)Hn(x)dx=0当m=n
当
m
=
n
m = n
m=n 时,上式不等于零,而是:
∫
−
∞
∞
e
−
x
2
H
n
2
(
x
)
,
d
x
=
2
n
n
!
π
\int_{-\infty}^{\infty} e^{-x^2} H_n^2(x) , dx = 2^n n! \sqrt{\pi}
∫−∞∞e−x2Hn2(x),dx=2nn!π
递推关系
赫米特多项式满足以下递推关系,这在实际计算和理论推导中都非常有用:
- 递推关系:
H n + 1 ( x ) = 2 x H n ( x ) − 2 n H n − 1 ( x ) H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x) Hn+1(x)=2xHn(x)−2nHn−1(x) - 微分关系:
d d x H n ( x ) = 2 n H n − 1 ( x ) \frac{d}{dx}H_n(x) = 2nH_{n-1}(x) dxdHn(x)=2nHn−1(x)
标准化
在某些文献中,你可能会看到赫米特多项式的一个归一化版本,通常是将它们除以 2 n 2^n 2n 以使得最高阶项的系数为1。
应用
在量子力学中,赫米特多项式出现在量子谐振子的解中。它们用来构建波函数的解析形式,其中
H
n
(
x
)
H_n(x)
Hn(x)描述了能量为
E
n
E_n
En的量子态。
在概率论中,与赫米特多项式相关的赫米特函数(是赫米特多项式的一个加权版本)在统计学中用来定义高斯过程的傅里叶变换。
在数值分析中,赫米特多项式可以用来生成赫米特-高斯求积规则,这是一种用来近似无限区间上被积函数积分的高效方法。
在计算物理学中,赫米特多项式常用于求解偏微分方程的谱方法中。由于它们的正交性和递推关系,赫米特多项式使得多项式逼近和高斯积分变得更加高效和精确。
正交多项式进行函数近似
正交多项式在函数近似中的应用基于傅里叶级数的概念,它允许我们用一系列多项式的线性组合来逼近函数。对于一个在区间 [ a , b ] [a, b] [a,b]上定义的函数 f ( x ) f(x) f(x),如果我们有一组在这个区间上相对于某个权重函数 w ( x ) w(x) w(x) 正交的多项式 P n ( x ) {P_n(x)} Pn(x),那么我们可以构造 f ( x ) f(x) f(x)的近似如下:
1. 选择正交多项式
根据函数 f ( x ) f(x) f(x) 的定义域和问题的性质,选择一组适当的正交多项式。例如:
- 对于定义在 [ − 1 , 1 ] [-1,1] [−1,1]上的函数,可以选择勒让德多项式。
- 如果函数包含指数型的衰减,可能会选择拉盖尔多项式或者赫米特多项式。
- 对于 [ − 1 , 1 ] [-1,1] [−1,1] 上的函数,并且需要最小化近似误差的最大值,可以使用切比雪夫多项式。
2. 计算展开系数
函数
f
(
x
)
f(x)
f(x) 可以表示为这些多项式的线性组合:
f
(
x
)
≈
∑
n
=
0
N
c
n
P
n
(
x
)
f(x) \approx \sum_{n=0}^{N} c_n P_n(x)
f(x)≈∑n=0NcnPn(x)
其中
N
N
N 是我们选择的近似的阶数,
c
n
c_n
cn是多项式
P
n
(
x
)
P_n(x)
Pn(x) 与
f
(
x
)
f(x)
f(x) 的内积的系数,可以通过下面的积分计算得到:
c
n
=
∫
a
b
f
(
x
)
P
n
(
x
)
w
(
x
)
d
x
∫
a
b
P
n
2
(
x
)
w
(
x
)
d
x
c_n = \frac{\int{a}^{b} f(x) P_n(x) w(x) dx}{\int{a}^{b} P_n^2(x) w(x) dx}
cn=∫abPn2(x)w(x)dx∫abf(x)Pn(x)w(x)dx
这里,
w
(
x
)
w(x)
w(x) 是与多项式
P
n
(
x
)
P_n(x)
Pn(x) 相关的权重函数。
3. 构建近似函数
一旦有了所有的展开系数
c
n
c_n
cn,我们就可以构建
f
(
x
)
f(x)
f(x) 的近似函数
f
approx
(
x
)
f_{\text{approx}}(x)
fapprox(x):
f
approx
(
x
)
=
∑
n
=
0
N
c
n
P
n
(
x
)
f{\text{approx}}(x) = \sum_{n=0}^{N} c_n P_n(x)
fapprox(x)=∑n=0NcnPn(x)
4. 评估近似的质量
近似的质量可以通过比较原始函数 f ( x ) f(x) f(x) 和近似函数 f approx ( x ) f_{\text{approx}}(x) fapprox(x)在定义域内各点的函数值来评估。质量的评估指标可以是最大误差、均方误差或者任何其他适当的误差度量方式。
注意事项
- 正交多项式的选择必须与函数的性质和定义域相匹配。
- 近似的阶数 N N N越高,近似通常越精确,但计算也更加复杂,并且可能遇到数值不稳定性的问题。
- 在计算展开系数 c n c_n cn 时,可以使用数值积分方法,比如辛普森法则或高斯求积法,特别是当积分没有解析解时。
- 有些情况下,展开系数也可以直接通过递推关系计算得到,这取决于选定的正交多项式的性质。
使用正交多项式进行函数近似是一种强大的数值方法,它在科学计算、工程、物理学和经济学等领域有广泛的应用。
示例
让我们以一个简单的例子说明如何使用正交多项式来近似一个函数。假设我们想要在区间 [ − 1 , 1 ] [-1, 1] [−1,1] 上近似函数 f ( x ) = e x f(x) = e^x f(x)=ex,我们可以使用勒让德多项式,因为这些多项式在该区间上是正交的。
步骤 1: 选择正交多项式
我们选择勒让德多项式 P n ( x ) P_n(x) Pn(x)。勒让德多项式在区间 [ − 1 , 1 ] [-1, 1] [−1,1]上相对于权重函数 w ( x ) = 1 w(x) = 1 w(x)=1 正交。
步骤 2: 计算展开系数
让我们使用勒让德多项式
P
0
(
x
)
=
1
P_0(x) = 1
P0(x)=1,
P
1
(
x
)
=
x
P_1(x) = x
P1(x)=x, 和
P
2
(
x
)
=
1
2
(
3
x
2
−
1
)
P_2(x) = \frac{1}{2}(3x^2 - 1)
P2(x)=21(3x2−1) 来进行二阶近似。我们的近似函数将是
f
approx
(
x
)
=
c
0
P
0
(
x
)
+
c
1
P
1
(
x
)
+
c
2
P
2
(
x
)
f_{\text{approx}}(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x)
fapprox(x)=c0P0(x)+c1P1(x)+c2P2(x)
我们需要计算系数
c
0
c_0
c0,
c
1
c_1
c1, 和
c
2
c_2
c2。按照正交性的定义,我们有:
c
n
=
∫
−
1
1
f
(
x
)
P
n
(
x
)
d
x
∫
−
1
1
P
n
2
(
x
)
d
x
c_n = \frac{\int_{-1}^{1} f(x) P_n(x) dx}{\int_{-1}^{1} P_n^2(x) dx}
cn=∫−11Pn2(x)dx∫−11f(x)Pn(x)dx
例如,对于
c
0
c_0
c0,我们有:
c
0
=
∫
−
1
1
e
x
P
0
(
x
)
d
x
∫
−
1
1
P
0
2
(
x
)
d
x
=
∫
−
1
1
e
x
d
x
∫
−
1
1
1
d
x
=
e
1
−
e
−
1
2
c_0 = \frac{\int_{-1}^{1} e^x P_0(x) dx}{\int_{-1}^{1} P_0^2(x) dx} = \frac{\int_{-1}^{1} e^x dx}{\int_{-1}^{1} 1 dx} = \frac{e^1 - e^{-1}}{2}
c0=∫−11P02(x)dx∫−11exP0(x)dx=∫−111dx∫−11exdx=2e1−e−1
对于
c
1
c_1
c1和
c
2
c_2
c2,我们需要计算相应的积分。这可能需要数值积分方法,因为
e
x
e^x
ex乘以勒让德多项式的积分没有解析解。
步骤 3: 构建近似函数
一旦我们得到了所有的
c
n
c_n
cn,我们就可以构建近似函数
f
approx
(
x
)
f_{\text{approx}}(x)
fapprox(x)。如果假设我们通过数值积分得到了
c
1
c_1
c1 和
c
2
c_2
c2 的近似值(为了简单起见,这里不显示具体的计算过程),我们的近似函数可能看起来像这样:
f
approx
(
x
)
≈
c
0
+
c
1
x
+
c
2
(
1
2
(
3
x
2
−
1
)
)
f_{\text{approx}}(x) \approx c_0 + c_1 x + c_2 \left(\frac{1}{2}(3x^2 - 1)\right)
fapprox(x)≈c0+c1x+c2(21(3x2−1))
步骤 4: 评估近似的质量
我们可以通过计算
f
approx
(
x
)
f_{\text{approx}}(x)
fapprox(x) 和
f
(
x
)
=
e
x
f(x) = e^x
f(x)=ex在区间
[
−
1
,
1
]
[-1, 1]
[−1,1]上的某些点处的差值来评估近似的质量。对于
x
=
0
x = 0
x=0,
0.5
0.5
0.5,和
1
1
1 我们可以得到:
e
0
−
(
c
0
+
c
1
⋅
0
+
c
2
⋅
0
)
=
1
−
c
0
e^0 - (c_0 + c_1 \cdot 0 + c_2 \cdot 0) = 1 - c_0
e0−(c0+c1⋅0+c2⋅0)=1−c0
e
0.5
−
(
c
0
+
c
1
⋅
0.5
+
c
2
⋅
0.125
)
e^{0.5} - (c_0 + c_1 \cdot 0.5 + c_2 \cdot 0.125)
e0.5−(c0+c1⋅0.5+c2⋅0.125)
e
1
−
(
c
0
+
c
1
⋅
1
+
c
2
⋅
0.5
)
e^1 - (c_0 + c_1 \cdot 1 + c_2 \cdot 0.5)
e1−(c0+c1⋅1+c2⋅0.5)
通过比较这些值,我们可以了解近似的准确性。如果需要更准确的近似,我们可以选择更高阶的勒让德多项式。
这个例子演示了如何使用正交多项式来近似函数。在实际应用中,由于涉及积分计算,通常需要使用数值方法来获得系数
c
n
c_n
cn。此外,评估近似的质量通常涉及到在整个定义域内的误差分析。