勒让德多项式(Legendre Polynomials)推导

本文详细推导了勒让德多项式(Legendre Polynomials)的递推关系和勒让德微分方程的解,并通过罗德里格公式(Rodrigues Formular)进行了验证。通过解析和应用二项式定理,证明了勒让德多项式的一系列性质和表达式。
摘要由CSDN通过智能技术生成

推导Legendre Polynomials(勒让德多项式)

问题:

证明Legendre Polylnomails(勒让德多项式)是Legendre Differential Equation(勒让德微分方程)的解
勒 让 德 微 分 方 程 : ( 1 − x 2 ) d 2 y d x 2 − 2 x d y d x + k ( k + 1 ) y = 0 勒让德微分方程:(1-x^2) \frac{d^2 y}{dx^2}-2x\frac{d y}{dx} + k(k+1)y=0 :(1x2)dx2d2y2xdxdy+k(k+1)y=0
有解
勒 让 德 多 项 式 : P k ( x ) = ∑ m = 0 k 2 ∣ k − 1 2 ( − 1 ) m ( 2 k − 2 m ) ! m ! ( 2 k ) ( k − m ) ! ( k − 2 m ) ! 勒让德多项式:P_k(x)=\sum_{m=0}^{\frac{k}{2}|\frac{k-1}{2}} \frac{(-1)^m(2k-2m)!}{m!(2^k)(k-m)!(k-2m)!} Pk(x)=m=02k2k1m!(2k)(km)!(k2m)!(1)m(2k2m)!

推导出递推关系(Recurrence Relation)

证明:首先我们变换一下微分方程。检查 2 x ( 1 − x 2 ) \frac{2x}{(1-x^2)} (1x2)2x,和 k ( k + 1 ) ( 1 − x 2 ) \frac{k(k+1)}{(1-x^2)} (1x2)k(k+1) 满足是用幂级数(Power Series)的方法。

d 2 y d x 2 − 2 x ( 1 − x 2 ) d y d x + k ( k + 1 ) ( 1 − x 2 ) y = 0 \frac{d^2 y}{dx^2}-\frac{2x}{(1-x^2)}\frac{d y}{dx} + \frac{k(k+1)}{(1-x^2)}y=0 dx2d2y(1x2)2xdxdy+(1x2)k(k+1)y=0
我们可以套用幂级数(Power Series)的方法求解微分方程。
y ( x ) = ∑ n = 0 ∞ a n x n y(x) = \sum_{n=0}^{\infty} a_n x^n y(x)=n=0anxn一阶微分 y ′ ( x ) = ∑ n = 0 ∞ n a n x n − 1 y^{'}(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} y(x)=n=0nanxn1二阶微分 y ′ ′ ( x ) = ∑ n = 0 ∞ n ( n − 1 ) a n x n − 2 y^{''}(x) = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} y(x)=n=0n(n1)anxn2
y ( x ) y^{}(x) y(x) y ′ ( x ) y^{'}(x) y(x) y ′ ′ ( x ) y^{''}(x) y(x)带入微分方程中,化简可得。
( 1 − x 2 ) ∑ n = 0 ∞ n ( n − 1 ) a n x n − 2 − 2 x ∑ n = 0 ∞ n a n x n − 1 + k ( k + 1 ) ∑ n = 0 ∞ a n x n = 0 ∑ n = 0 ∞ n ( n − 1 ) a n x n − 2 − x 2 ∑ n = 0 ∞ n ( n − 1 ) a n x n − 2 − 2 x ∑ n = 0 ∞ n a n x n − 1 + k ( k + 1 ) ∑ n = 0 ∞ a n x n = 0 ∑ n = 0 ∞ n ( n − 1 ) a n x n − 2 − ∑ n = 0 ∞ n ( n − 1 ) a n x n − 2 ∑ n = 0 ∞ n a n x n + k ( k + 1 ) ∑ n = 0 ∞ a n x n = 0 \begin{aligned} (1-x^2) \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2}-2x \sum_{n=0}^{\infty} n a_n x^{n-1}+k(k+1)\sum_{n=0}^{\infty} a_n x^n&=0 \\ \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2}-x^2 \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2}-2x \sum_{n=0}^{\infty} n a_n x^{n-1}+k(k+1)\sum_{n=0}^{\infty} a_n x^n&=0 \\ \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2}- \sum_{n=0}^{\infty} n(n-1) a_n x^{n }-2 \sum_{n=0}^{\infty} n a_n x^{n}+k(k+1)\sum_{n=0}^{\infty} a_n x^n&=0 \end{aligned} (1x2)n=0n(n1)anxn22xn=0nanxn1+k(k+1)n=0anxnn=0n(n1)anxn2x2n=0n(n1)anxn22xn=0nanxn1+k(k+1)n=0anxnn=0n(n1)anxn2n=0n(n1)anxn2n=0nanxn+k(k+1)n=0anxn=0=0=0
针对方程中的第一项 ∑ n = 0 ∞ n ( n − 1 ) a n x n − 2 \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} n=0n(n1)anxn2中的角标变量 n n n用虚拟变量 m = n − 2 m=n-2 m=n2来替换。当 n = 0 n=0 n=0的时候, m = − 2 m=-2 m=2并且 n = m + 2 n=m+2 n=m+2。所以第一项可以整理得:
∑ n = 0 ∞ n ( n − 1 ) a n x n − 2 = ∑ m = − 2 ∞ ( m + 2 ) ( m + 1 ) a m + 2 x m \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2}= \sum_{m=-2}^{\infty} (m+2)(m+1) a_{m+2} x^{m} n=0n(n1)anxn2=m=2(m+2)(m+1)am+2xm
我们展开第一项,当 m = − 1 m=-1 m=1 m = − 2 m=-2 m=2的时候均等于 0 0 0。所以角标变量可以从 m = 0 m=0 m=0开始。因为 m m m是虚拟变量所以我们用 n n n来替换回 m m m。原微分方程整理可得:

∑ n = 0 ∞ ( n + 2 ) ( n + 1 ) a n + 2 x n − ∑ n = 0 ∞ n ( n − 1 ) a n x n − 2 ∑ n = 0 ∞ n a n x n + k ( k + 1 ) ∑ n = 0 ∞ a n x n = 0 ∑ n = 0 ∞ [ ( n + 2 ) ( n + 1 ) a n + 2 − n ( n − 1 ) a n − 2 n a n + k ( k + 1 ) a n ] x n = 0 \begin{aligned} \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^{n}- \sum_{n=0}^{\infty} n(n-1) a_n x^{n }-2 \sum_{n=0}^{\infty} n a_n x^{n}+k(k+1)\sum_{n=0}^{\infty} a_n x^n&=0 \\ \sum_{n=0}^{\infty} \left [ (n+2)(n+1) a_{n+2} - n(n-1) a_n -2 n a_n +k(k+1)a_n \right ]x^n&=0 \end{aligned} n=0(n+2)(n+1)an+2xnn=0n(n1)anxn2n=0nanxn+k(k+1)n=0anxnn=0[(n+2)(n+1)an+2n(n1)an2nan+k(k+1)an]xn=0=0

所以系数等于 0 0 0
( n + 2 ) ( n + 1 ) a n + 2 − n ( n − 1 ) a n − 2 n a n + k ( k + 1 ) a n = 0 (n+2)(n+1) a_{n+2} - n(n-1) a_n -2 n a_n +k(k+1)a_n = 0 (n+2)(n+1)an+2n(n1)an2nan+k(k+1)an=0
于是我们找到了一个递推关系(recurrence relation)的等式,化简可得。
a n + 2 = a n n ( n − 1 ) + 2 n − k ( k + 1 ) ( n + 2 ) ( n + 1 ) = a n ( n − k ) ( n + k + 1 ) ( n + 2 ) ( n + 1 ) \begin{aligned} a_{n+2} &= a_n\frac {n(n-1)+2n-k(k+1)}{(n+2)(n+1)} \\ & = a_n\frac {(n-k)(n+k+1)}{(n+2)(n+1)} \end{aligned} an+2=an(n+2)(n+1)n(n1)+2nk(k+1)=an(n+2)(n+1)(nk)(n+k+1)

推导勒让德多项式

假设 a 0 a_0 a0 是勒让德多项式有偶数自由度的 k k k的首项系数, a 1 a_1 a1 是勒让德多项式有基数自由度的 k k k的首项系数。
假设 a k a_k ak 是勒让德多项式最后一项系数。为了数学上的方便,我们让 a k a_k ak赋予一个特定常数值:
a k = ( 2 k ) ! 2 k ( k ! ) 2 a_k = \frac{(2k)!}{2^k (k!)^2} ak=2k(k!)2(2k)!
假设为了数学上的方便,我们让 P k ( x = 1 ) = 1 P_k(x=1)=1 Pk(x=1)=1
由出递推关系(Recurrence Relation)得:
a n = ( n + 2 ) ( n + 1 ) ( n − k ) ( n + k + 1 ) a n + 2 a k − 2 = k ( k − 1 ) ( − 2 ) ( 2 k − 1 ) a k = k ( k − 1 ) ( − 2 ) ( 2 k − 1 ) ( 2 k ) ! 2 k ( k ! ) 2 = − 1 ( k ) ( k − 1 ) 2 ( 2 k − 1 ) 2 k ( 2 k − 1 ) ( 2 k − 2 ) ! 2 k k 2 ( k − 1 ) 2 ( ( k − 2 ) ! ) 2 = − 1 ( 2 k − 2 ) ! 2 k ( k − 1 ) ! ( k − 2 ) ! ⋮ a k − 2 m = ( − 1 ) m ( 2 k − 2 m ) ! m ! ( 2 k ) ( k − m ) ! ( k − 2 m ) ! \begin{aligned} a_n &= \frac {(n+2)(n+1)}{(n-k)(n+k+1)}a_{n+2}\\ a_{k-2} &= \frac {k(k-1)}{(-2)(2k-1)}a_{k}\\ &= \frac {k(k-1)}{(-2)(2k-1)}\frac{(2k)!}{2^k (k!)^2}\\ &= \frac {-1(k)(k-1)}{2(2k-1)}\frac{2k(2k-1)(2k-2)!}{2^k k^2 (k-1)^2((k-2)!)^2}\\ &= \frac {-1(2k-2)!}{2^k(k-1)!(k-2)!}\\ &\vdots\\ a_{k-2m} &= \frac{(-1)^m(2k-2m)! }{m!(2^k)(k-m)!(k-2m)!} \end{aligned} anak2ak2m=(nk)(n+k+1)(n+2)(n+1)an+2=(2)(2k1)k(k1)ak=(2)(2k1)k(k1)2k(k!)2(2k)!=2(2k1)1(k)(k1)2kk2(k1)2((k2)!)22k(2k1)(2k2)!=2k(k1)!(k2)!1(2k2)!=m!(2k)(km)!(k2m)!(1)m(2k2m)!其中 m ∈ [ 0 , k / 2 ] m \in[0,k/2] m[0,k/2] 勒让德多项式有偶数自由度的 k k k m ∈ [ 0 , k − 1 2 ] m \in[0,\frac{k-1}{2}] m[0,2k1] 勒让德多项式有基数自由度的 k k k
由此证明的:
P k ( x ) = ∑ m = 0 k 2 ∣ k − 1 2 ( − 1 ) m ( 2 k − 2 m ) ! m ! ( 2 k ) ( k − m ) ! ( k − 2 m ) ! x k − 2 m P_k(x) = \sum_{m=0}^{\frac{k}{2}|\frac{k-1}{2}} \frac{(-1)^m(2k-2m)! }{m!(2^k)(k-m)!(k-2m)!} x^{k-2m} Pk(x)=m=02k2k1m!(2k)(km)!(k2m)!(1)m(2k2m)!xk2m

推导 Rodrigues Formular (罗德里格公式)

问题

求证恒等式左边等于右边
1 2 k k ! d k d x k [ ( x 2 − 1 ) k ] = ∑ m = 0 k 2 ∣ k − 1 2 ( − 1 ) m ( 2 k − 2 m ) ! x k − 2 m m ! ( 2 k ) ( k − m ) ! ( k − 2 m ) ! \frac{1}{2^k k!} \frac{\mathrm{d} ^k}{\mathrm{d} x^k}\left[ (x^2-1)^k \right]=\sum_{m=0}^{\frac{k}{2}|\frac{k-1}{2}} \frac{(-1)^m(2k-2m)! x^{k-2m}}{m!(2^k)(k-m)!(k-2m)!} 2kk!1dxkdk[(x21)k]=m=02k2k1m!(2k)(km)!(k2m)!(1)m(2k2m)!xk2m

应用二项式定理

解:
我们在 ( x 2 − 1 ) k (x^2-1)^k (x21)k上应用二项式定理。由二项式定理可知:
( x + y ) k = ∑ i = 0 n n ! i ! ( n − i ) ! x n − i y i ( x 2 − 1 ) k = ∑ i = 0 k k ! i ! ( k − i ) ! ( x 2 ) k − i ( − 1 ) i \begin{aligned} (x+y)^k &= \sum_{i=0}^n \frac{n!}{i!(n-i)!}x^{n-i}y^i\\ (x^2-1)^k &= \sum_{i=0}^k \frac{k!}{i!(k-i)!}(x^2)^{k-i}(-1)^i \end{aligned} (x+y)k(x21)k=i=0ni!(ni)!n!xniyi=i=0ki!(ki)!k!(x2)ki(1)i

公式证明

我们把有二项式定理分解的 ( x 2 − 1 ) k (x^2-1)^k (x21)k带入罗德里格公式部分得:
1 2 k k ! d k d x k [ ∑ i = 0 k k ! i ! ( k − i ) ! ( x 2 ) k − i ( − 1 ) i ] \frac{1}{2^k k!} \frac{\mathrm{d} ^k}{\mathrm{d} x^k}\left[ \sum_{i=0}^k \frac{k!}{i!(k-i)!}(x^2)^{k-i}(-1)^i \right] 2kk!1dxkdk[i=0ki!(ki)!k!(x2)ki(1)i]
因为微分是线性运算符所以可知 d d x ∑ = ∑ d d x \frac{\mathrm{d} }{\mathrm{d} x}\sum=\sum \frac{\mathrm{d} }{\mathrm{d} x} dxd=dxd,由此化简可得:
= 1 2 k k ! ∑ i = 0 k k ! i ! ( k − i ) ! ( − 1 ) i d k d x k [ ( x 2 ) k − i ] = 1 2 k k ! ∑ i = 0 k k ! i ! ( k − i ) ! ( − 1 ) i ( 2 k − 2 i ) ! ( k − 2 i ) ! x k − 2 i = ∑ i = 0 k 2 ∣ k − 1 2 ( − 1 ) i ( 2 k − 2 i ) ! 2 k i ! ( k − i ) ! ( k − 2 i ) ! x k − 2 i \begin{aligned} &=\frac{1}{2^k k!} \sum_{i=0}^k \frac{k!}{i!(k-i)!} (-1)^i \frac{\mathrm{d}^k }{\mathrm{d} x^k}\left[ (x^2)^{k-i} \right]\\ &=\frac{1}{2^k k!} \sum_{i=0}^k \frac{k!}{i!(k-i)!} (-1)^i \frac{(2k-2i)!}{(k-2i)!}x^{k-2i}\\ &=\sum_{i=0}^{\frac{k}{2}|\frac{k-1}{2}} \frac{(-1)^i (2k-2i)!}{2^ki!(k-i)!(k-2i)!}x^{k-2i} \end{aligned} =2kk!1i=0ki!(ki)!k!(1)idxkdk[(x2)ki]=2kk!1i=0ki!(ki)!k!(1)i(k2i)!(2k2i)!xk2i=i=02k2k12ki!(ki)!(k2i)!(1)i(2k2i)!xk2i
其中
d n d x n x r f o r    n = 1 : r x r − 1 = r ! ( r − 1 ) ! x r − 1 n = 2 : r ( r − 1 ) x r − 2 = r ! ( r − 2 ) ! x r − 2 ⋮ n = n : r ( r − 1 ) ⋯ ( r − n ) x r − n = r ! ( r − n ) ! x r − n \begin{aligned} \frac{\mathrm{d}^n }{\mathrm{d} x^n} x^r for \; n=1 &: r x^{r-1} = \frac{r!}{(r-1)!}x^{r-1}\\ n=2&: r (r-1) x^{r-2} = \frac{r!}{(r-2)!}x^{r-2}\\ &\vdots\\ n=n &:r (r-1)\cdots (r-n)x^{r-n} = \frac{r!}{(r-n)!}x^{r-n}\\ \end{aligned} dxndnxrforn=1n=2n=n:rxr1=(r1)!r!xr1:r(r1)xr2=(r2)!r!xr2:r(r1)(rn)xrn=(rn)!r!xrn
由此可得:
d k d x k [ ( x 2 ) k − i ] = d k d x k ( x 2 k − 2 i ) = ( 2 k − 2 i ) ! ( 2 k − 2 i − k ) ! x 2 k − 2 i − k = ( 2 k − 2 i ) ! ( k − 2 i ) ! x k − 2 i \begin{aligned} \frac{\mathrm{d}^k }{\mathrm{d} x^k}\left[ (x^2)^{k-i} \right] &= \frac{\mathrm{d}^k }{\mathrm{d} x^k}\left(x^{2k-2i} \right)\\ &=\frac{(2k-2i)!}{(2k-2i-k)!}x^{2k-2i-k}\\ &=\frac{(2k-2i)!}{(k-2i)!}x^{k-2i} \end{aligned} dxkdk[(x2)ki]=dxkdk(x2k2i)=(2k2ik)!(2k2i)!x2k2ik=(k2i)!(2k2i)!xk2i
由此证明结论:
P k ( x ) = 1 2 k k ! d k d x k [ ( x 2 − 1 ) k ] P_k(x) = \frac{1}{2^k k!} \frac{\mathrm{d} ^k}{\mathrm{d} x^k}\left[ (x^2-1)^k \right] Pk(x)=2kk!1dxkdk[(x21)k]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值