faster r-cnn demo.py理解

1. def vis_detections(im, class_name, dets, thresh=0.5) ;

// im是测试图片;

// class_name是类别名称,定义在CLASSES中;

// dets是非极大值抑制后得到的bbox和score的数组;

// thresh是score的阈值,高于阈值的候选框会被画出来

2. def demo(net, image_name)

// 对测试图片提取预选框,进行非极大值抑制操作,调用vis_detections函数画矩形框。

// net是测试时使用的网络结构,image_name是测试的名称

3. def parse_args()

// 解析命令行参数

4.if __name__ == '__main__'

// 主函数

参考https://blog.csdn.net/u013129427/article/details/74652893 作简要记录

转载于:https://www.cnblogs.com/wuxinyi/p/9105553.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值