如何判断异常值

使用Z标准化得到的阈值作为判断标准,标准化后的得分超过阈值则为正常:

import pandas as pd

#生成异常数据
df = pd.DataFrame({'col1':[1,120,3,5,2,12,13],
                   'col2':[12,17,31,53,22,32,43]})
print(df)#打印输出

#通过Z-Score方法判断异常值
df_zscore = df.copy()#复制一个来存储Z-score得分的数据框
cols = df.columns #获得数据框的列名
for col in cols:#循环读取每列
    df_col = df[col]#得到每列的值
    z-score = (df_col-df_col.mean())/df_col.std()#计算每列的Z-score得分
    df-zscore[col] = z_score.abs() > 2.2 #判断Z-score得分是否大于2.2,如果得分为Ture,否则为False
print(df_zscore)
    

 

转载于:https://www.cnblogs.com/qiuyuyu/p/10060560.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值