matlab振动方程,数理方程关于振动方程的分析matlab.doc

41528d3028836879cd698677c3999917.gif数理方程关于振动方程的分析matlab.doc

1数理方程基于MATLAB的问题分析报告一、问题的提出、背景、意义振动是指物体经过它的平衡位置所作的往复运动或某一物理量在其平衡值附近的来回变动。而波动则是一种能量传播的方式。虽然形式不同,但是两者的联系十分紧密,振动是波动的根源,波动是振动的传播形式。因此在分析问题乃至实际操作中,往往是把两者放在一起分析的,首先讨论振动的各方面特性,这样就相当于已知了波动一点上的相应特性,再对波动进行分析时,就只2用讨论距离的影响了。一般来说,振动只受时间影响,加上距离的参数,最终波动就只受两个变量影响,而且也知道了它们是无关的,就可以使用分离变量法进行求解。弦振动是波动的一类特殊形式,它在音乐物理学、材料学、地理学、物质分析学等许多领域都得到了应用,而弦振动所属声学又是力学的一个非常独立的分支,因此它在各领域的作用几乎是不可取代的。由于近年来的各方面硬件设施和软件的发展,曾经停止发展很长一段时间的对弦振动的分析又开始体现出它独特的优势。在产生音乐的过程中,琴弦的振动是很常见的一种方式,本文就将对琴弦振动进行一定的研究,通过对弦振动方程的理解,给出不同初始条件,并分析出琴弦不同地方产生波的特性,再用MATLAB做好程序,画出相应的图像,经比较后得到琴弦的拨发与产生声音的联系。二、问题分析思路21建立偏微分方程分析一根琴弦的振动问题,通过针对具体要分析的问题,可以列出弦振动方程以及初始条件(L为弦的长度,因为是两端固定的2,0,,,TXTUATLUX弦,初始条件一定有),用分离变量法很容易求得它相应的0,0解,即弦振动的函数。22对琴弦参数的求解已知常量T128N,普通钢琴弦密度,根据琴弦传播速度公式379/GCM3,可以求得速度V。TV23求解对象由弦振动的函数可以得到弦上不同点的振动情况。随机选取几个点,得到它们的振动情况,并比较。24作图方法通过MATLAB仿真出不同点的图像,比较图像的幅值周期等参数。(开始考虑到有两种方式,一种直接通过上一个步骤求出的解使用简单的MATLAB命令画出图,另一种则是通过MATLAB解方程后再画出相应的图像,事实上第一种MATLAB是做不到的,于是用第二种)25仿真结果仿真出弦振动的频谱图,即以频率和振幅为横纵坐标的图,得到不同频率与振幅的关系,对图可以进行一系列的分析,得到相应的结果。26方程解的现实意义由于琴弦振动实际意义,我们将弦振动的实际音效也用MATLAB做出来了,这样更能直观的体会到琴弦振动条件不同带来的影响。但是发出的声音不如实际生活那么和谐美妙(缺少腔体等音乐元件)。三、具体求解步骤31标准齐次弦振动的求解如前文所提,对于这样一个标准的齐次弦振动问题,分离变量法是我们主要所采取的解题方法。设方程具有的解的形式为(31)U(X,T)TTXX4将变量T与变量X分离开后,代入原方程,得到(32)2TXA(33)2令(34)2TXA此时,得到两个常微分方程(35)0,(36)2TA代入边界条件,得到(37)TX0,TL0由于不是我们需要的解,对T(T)不能恒为0,所以对于X(X),,0UXT我们可以得到(38)0XL这样一来,我们可以得到常微分方程满足边界条件0X的平凡解。0XL当时,原方程的边值问题就只有零解。当时,原方程的通解为(39)2NLCOSINXXAXBX代入边界条件,得(310)010A(311)COSINXLBL20NTA解得的结果为,A0,。为了使X(X)不恒为0,应有,亦I0B5即,则SIN0L,12,3N(312)N2L相应的特征函数为,其中BN为任意非零常数,对应每一SINNXXXB个特征值方程的解是20TA(313)COSSINNTATTCDLCOSSINNATATTCDL其中,CN,DN为任意常数。我们得到原方程一系列特解为(314),COSSININNNATATXUXTTXX为了求出满足的解,我们将作傅立叶拓展,把每一项全部叠加,UT,NUT起来,则(315)1,COSSININATATXUXTCDLL为了确定系数CN,DN,将方程代入初始条件,得(316)11,0SIN,0SINTNXAXUXUXLL之后即可解出CN,DN(317)02SIN,LNCDN(318)DA32实际弦振动的求解对于第二节一开始提出的一维实际琴弦振荡问题,我们将实际参数代入公式中。这里,取4025TAV考虑到弦乐器的常见技法就是拨弦,拨弦即用手指把琴弦拨离平衡位置。使其振动发声。这相当于在XA处把弦拉高到高度H,然后松开,使其自由振动,6即弦振动的初始位移不为零而初速度为零。1假设在琴弦的正中间拨弦,则AL/2,取值为434MM,拨弦高度H为4MM。可以得到404338686XX0那么,此时的波动方程表达式为(319)213,SINICOSNAUXTXTLX为坐标,T为时间,如果我们取弦上三个具有代表性的点,根据琴弦的对称性,就可以大致了解整个弦的振动情况;为此,我们不妨选取XL/6,XL/3,XL/2三个点作为特征点。此时,分别令XL/6,XL/3,XL/2,代入(319),有(320)1213,SINICOS6NAUXTTL(321)221,II3NTT(322)321,SIINCOS2NAUXTTL(2)若不是在琴弦的正中间拨弦,是在AL/3处拨弦,则此时的波动方程为(323)2136,SINICOSNAUXTXTL7仅仅是最前端系数发生变化,不影响我们对问题的研究。故仅取AL/2即可。33琴弦特征点的图像下面依照(320)(322)的表达式作出对应的图像当A取L/6时8当A取L/3时当A取L/2时934琴弦特征点图像的分析综合上面三张图可以得到相同点三张图都并不是想象中那种较为正常的正弦波波形,主要是因为其函数就是2个SIN和一个COS函数相乘得到的。仔细观察还可以得到,三张图的周期,即频率都是一样的,这与已知到的弦振动物理驻波方面的知识相符。知道上面的直观结论后,可以进一步实验得到,在整条弦上,每一个点的振动都是非正弦且周期的,振动过程中都有一部分极大值是相同的。不同点1/6弦长处的平均振幅最小,且波峰最大值持续时间长,1/2弦长处的的平均振幅最大,且波峰最大值持续时间短,1/3弦长处则是处于中间。在多做实验可以进一步得到,越靠近弦端点处,振幅越小,波峰最大值持续时间越长,声音越容易浑厚低沉;越靠近中点处振幅越大,波峰最大值持续时间越短,声音越容易高亢嘹亮,可见幅值响应对于不同的点是不同的。35琴弦振动问题的结论及现实意义事实上,振幅越大的地方在物理意义就是此时音量比较大,综合以上分析,在拨弦的时候若拨动点越靠近中点,则产生音量越大。另一方面,对于不同拨弦点,其频率基本是一致的,这也与实际比较吻合,因为对琴弦乐器,改变音调(即频率)的方法就是换一根更长(或更短)的琴弦拨动。3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值