2019.6.14 巴塞尔问题

巴塞尔问题:

∑ n = 1 ∞ 1 n 2 = π 6 \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi}{6} n=1n21=6π

首先:
s i n x x = ∑ k = 0 ∞ x 2 k ( 2 k + 1 ) ! \frac{sinx}{x}=\sum_{k=0}^{\infty}\frac{x^{2k}}{(2k+1)!} xsinx=k=0(2k+1)!x2k

我们假设可以把这个无穷级数表示为线性因子的乘积,

因为 s i n x x = 0 \frac{sinx}{x}=0 xsinx=0的根出现在 x = n π x=n\pi x=nπ,期中 n = ± 1 , ± 2 , ± 3... n=\pm{1},\pm{2},\pm{3}... n=±1,±2,±3...
s i n x x = ∏ k = 1 ∞ ( 1 − x k π ) ( 1 + x k π ) = ∏ k = 1 ∞ ( 1 − x 2 k 2 π 2 ) \frac{sinx}{x}=\prod_{k=1}^{\infty}(1-\frac{x}{k\pi})(1+\frac{x}{k\pi})=\prod_{k=1}^{\infty}(1-\frac{x^2}{k^2\pi^2}) xsinx=k=1(1kπx)(1+kπx)=k=1(1k2π2x2)
把其中的二次项提出,得到:
− 1 π 2 ∑ n = 1 ∞ 1 n 2 -\frac{1}{\pi^2}\sum_{n=1}^{_\infty}\frac{1}{n^2} π21n=1n21
s i n x x \frac{sinx}{x} xsinx原先的级数展开式中可以看出, x 2 x^2 x2的系数是 − 1 3 ! = − 1 6 -\frac{1}{3!}=-\frac{1}{6} 3!1=61

那么,

− 1 π 2 ∑ n = 1 ∞ 1 n 2 = − 1 6 -\frac{1}{\pi^2}\sum_{n=1}^{_\infty}\frac{1}{n^2}=-\frac{1}{6} π21n=1n21=61

∑ n = 1 ∞ 1 n 2 = π 2 6 \sum_{n=1}^{_\infty}\frac{1}{n^2}=\frac{\pi^2}{6} n=1n21=6π2

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值