python求向量函数的雅可比矩阵_[数学] 向量函数的雅可比矩阵与链式法则

本文介绍了多元数量函数的梯度和向量函数的雅可比矩阵,详细阐述了雅可比矩阵的概念,并通过一个例子展示了如何用Python计算雅可比矩阵以及应用链式法则。内容涵盖了向量函数的链式法则的矩阵表示和实际计算过程。
摘要由CSDN通过智能技术生成

复习一下我的数学知识T_T

1. 回顾高等数学:多元数量函数的梯度

回想高等数学中常见的多元数量函数$f:\mathbb{R}^{n}\rightarrow \mathbb{R}^{1}$,我们可以把他的输入当作一个向量 $\bf{x}\in \mathbb{R}^{n}$,输出$y=f(\bf{x})\in \mathbb{R}^{1}$是一个数字。那么由高数的知识我们知道$f$的梯度定义为

$$

\nabla f_{\boldsymbol{x}} \overset{\underset{\mathrm{def}}{}}{=} \left[ \frac{\partial f }{\partial x_1}, \frac{\partial f }{\partial x_2},\cdots,\frac{\partial f }{\partial x_n} \right]=\frac{\partial f }{\partial \boldsymbol{x}}

$$

有了上式,我们还可以写出全微分的向量化表示

\[

\begin{aligned}

df &= \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}dx_2+\cdots+\frac{\partial f}{\partial x_n}dx_n \\

&=\left[ \frac{\partial f }{\partial x_1}, \frac{\partial f }{\partial x_2},\cdots,\frac{\partial f }{\partial x_n} \right] \left[dx_1, dx_2,\cdots,dx_n \right]^T \\

&=\frac{\partial f }{\p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值