【GCN】图卷积网络初探——基于图(Graph)的傅里叶变换和卷积

【GCN】图卷积网络初探——基于图(Graph)的傅里叶变换和卷积

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/qq_41727666/article/details/84622965

一、CNN(卷积神经网络)中的离散卷积

推荐阅读:如何通俗易懂地解释卷积?

1、CNN中的离散卷积:共享参数的过滤器

2、CNN中的卷积操作:通过计算中心像素点以及相邻像素点的【加权和】构成【feature map】;
加权系数=卷积核的权重系数

【实例】下式是一个隐藏神经元的输出计算公式,b为偏置,w为5×5的权重向量,a为上一层的激活值,σ()为激活函数。
可以看出,将上一层的5×5=25的神经元(a)加权(w)求和
在这里插入图片描述

3、CNN中的卷积目的:空间特征的提取

4、确定卷积核的系数:随机化初值,训练中根据误差函数loss,通过反向传播+梯度下降进行迭代优化。

二、GCN基本概念介绍

(一)图Graph

定义:顶点和边建立的关系拓扑图

(二)研究GCN的原因

1、CNN的【平移不变性】在【非矩阵结构】数据上不适用

2、希望在【拓扑图】上提取空间特征来进行机器学习

3、GCN主要工作:引入可以优化的【卷积参数】

(三)提取【拓扑图】空间特征的两种方式

1、vertex domain(spatial domain):顶点域(空间域)

操作:把每个顶点相邻的neighbors找出来

缺点:每个顶点的neighbors不同,计算处理必须针对每个节点

2、spectral domain:谱域

过程:

(1)定义graph上的Fourier Transformation傅里叶变换

(利用Spectral graph theory,借助图的拉普拉斯矩阵的特征值和特征向量研究图的性质)

(2)定义graph上的convolution卷积

三、图的拉普拉斯矩阵

(一)定义:拉普拉斯矩阵L

L=DAL=D-AL=DA
其中,L为Laplacian矩阵;
      D是顶点的度矩阵(对角矩阵),对角线上的元素依次为各个顶点的度(与该顶点相连的边的条数);
      A是图的邻接矩阵。

计算方法实例:
在这里插入图片描述

(二)拉普拉斯矩阵L的良好性质

1、是对称矩阵,可以进行谱分解(特征分解),与GCN的spectral domain对应

2、只在【中心节点】和【一阶相连的顶点】这两种位置上有非0元素,其余位置都是0
注:一阶相连就是通过一条边直接相连,如上图中与顶点1一阶相连的顶点为5和2;
二阶相连就是通过两条边相连,如上图中与顶点1二阶相连的顶点为4(1-5-4)、2(1-5-2)、5(1-2-5)、3(1-2-3)

3、可以通过拉普拉斯算子与拉普拉斯矩阵进行类比

(三)拉普拉斯矩阵L的谱分解(特征分解)

1、矩阵L的特征分解定义:将矩阵L分解为由特征值λ和特征向量u表示的矩阵之积

(1)求特征值和特征向量:λ为特征值,u为特征向量,则满足下式:
Lu=λuLu=\lambda uLu=λu

(2)求特征分解:

令 L是一个 N×N 的方阵,且有 N 个线性无关的特征向量 。
这样, L可以被分解为:
L=UΛU1=U⎛⎝⎜λ1...λ3⎞⎠⎟U1L=U\Lambda U^{-1} =U\begin{pmatrix}\lambda_1& & \\ &...& \\ & & \lambda_3 \end{pmatrix} U^{-1}L=UΛU1=Uλ1...λ3U1
其中,U是N×N方阵,且其第i列为L的特征向量ui,ui为列向量;
U=(u1⃗ ,u2⃗ ,...,un⃗ )U=(\vec{u_1},\vec{u_2},...,\vec{u_n})U=(u1,u2

转载于:https://www.cnblogs.com/think90/p/11508851.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值