费尔马小定理:如果p是一个素数,且0<a<p,则a^(p-1)%p=1.
利用费尔马小定理,对于给定的整数n,可以设计素数判定算法,通过 计算d=a^(n-1)%n来判断n的素性,当d!=1时,n肯定不是素数,当d=1时,n很可能是素数.
二次探测定理:如果n是一个素数,且0<x<p,则方程x^2%p=1的解为:x=1或 x=p-1.
利用二次探测定理,可以再利用费尔马小定理计算a^(n-1)%n的过程 中增加对整数n的二次探测,一旦发现违背二次探测条件,即得出n不是素数的结论.
如果n是素数,则(n-1)必是偶数,因此可令(n-1)=m*(2^q),其中m是正奇数(若n是偶数,则上面的m*(2^q)一定可以分解成一个正奇数乘以2的k次方的形式),q是非负整数,考察下面的测试:
序列:
a^m%n; a^(2m)%n; a^(4m)%n; …… ;a^(m*2^q)%n
把上述测试序列叫做Miller测试,关于Miller测试,有下面的定理:
定理:若n是素数,a是小于n的正整数,则n对以a为基的Miller测试,结果为真. Miller测试进行k次,将合数当成素数处理的错误概率最多不会超过4^(-k).
借鉴别人的,虚心学习
#include
<
iostream
>
#include < ctime >
#include < cstdlib >
#include < cmath >
#include < algorithm >
using namespace std;
const int TIME = 12 ; // Miller测试次数
__int64 mod_mult(__int64 a, __int64 b, __int64 n) // 计算(a*b)%n
{
__int64 s = 0 ;
a = a % n;
while (b)
{
if (b & 1 )
{
s += a;
s %= n;
}
a = a << 1 ;
a %= n;
b = b >> 1 ;
}
return s;
}
__int64 mod_exp(__int64 a, __int64 b, __int64 n) // 计算(a^b)%n
{
__int64 d = 1 ;
a = a % n;
while (b >= 1 )
{
if (b & 1 )
d = mod_mult(d,a,n);
a = mod_mult(a, a, n);
b = b >> 1 ;
}
return d;
}
bool Wintess(__int64 a, __int64 n) // 以a为基对n进行Miller测试并实现二次探测
{
__int64 m,x,y;
int i,j = 0 ;
m = n - 1 ;
while (m % 2 == 0 ) // 计算(n-1)=m*(2^j)中的j和m,j=0时m=n-1,不断的除以2直至n为奇数
{
m = m >> 1 ;
j ++ ;
}
x = mod_exp(a,m,n);
for (i = 1 ;i <= j;i ++ )
{
y = mod_exp(x, 2 ,n);
if ((y == 1 ) && (x != 1 ) && (x != n - 1 )) // 二次探测
return true ; // 返回true时,n是合数
x = y;
}
if (y != 1 )
return true ;
return false ;
}
bool miller_rabin(__int64 n, int times) // 对n进行s次的Miller测试
{
__int64 a;
int i;
if (n == 1 )
return false ;
if (n == 2 )
return true ;
if (n % 2 == 0 )
return false ;
srand(time(NULL));
for (i = 1 ;i <= times;i ++ )
{
a = rand() % (n - 1 ) + 1 ;
if (Wintess(a, n))
return false ;
}
return true ;
}
int main()
{
__int64 a,p,tmp;
bool prime;
while (scanf( " %I64d%I64d " , & p, & a) != EOF)
{
if (a == 0 && p == 0 )
break ;
prime = miller_rabin(p,TIME);
if ( ! prime) // p不是素数,则判断(a^p)%p=a是否成立
{
tmp = mod_exp(a,p,p);
if (tmp == a)
printf( " yes\n " );
else
printf( " no\n " );
}
else
printf( " no\n " );
}
system( " pause " );
return 0 ;
}
#include < ctime >
#include < cstdlib >
#include < cmath >
#include < algorithm >
using namespace std;
const int TIME = 12 ; // Miller测试次数
__int64 mod_mult(__int64 a, __int64 b, __int64 n) // 计算(a*b)%n
{
__int64 s = 0 ;
a = a % n;
while (b)
{
if (b & 1 )
{
s += a;
s %= n;
}
a = a << 1 ;
a %= n;
b = b >> 1 ;
}
return s;
}
__int64 mod_exp(__int64 a, __int64 b, __int64 n) // 计算(a^b)%n
{
__int64 d = 1 ;
a = a % n;
while (b >= 1 )
{
if (b & 1 )
d = mod_mult(d,a,n);
a = mod_mult(a, a, n);
b = b >> 1 ;
}
return d;
}
bool Wintess(__int64 a, __int64 n) // 以a为基对n进行Miller测试并实现二次探测
{
__int64 m,x,y;
int i,j = 0 ;
m = n - 1 ;
while (m % 2 == 0 ) // 计算(n-1)=m*(2^j)中的j和m,j=0时m=n-1,不断的除以2直至n为奇数
{
m = m >> 1 ;
j ++ ;
}
x = mod_exp(a,m,n);
for (i = 1 ;i <= j;i ++ )
{
y = mod_exp(x, 2 ,n);
if ((y == 1 ) && (x != 1 ) && (x != n - 1 )) // 二次探测
return true ; // 返回true时,n是合数
x = y;
}
if (y != 1 )
return true ;
return false ;
}
bool miller_rabin(__int64 n, int times) // 对n进行s次的Miller测试
{
__int64 a;
int i;
if (n == 1 )
return false ;
if (n == 2 )
return true ;
if (n % 2 == 0 )
return false ;
srand(time(NULL));
for (i = 1 ;i <= times;i ++ )
{
a = rand() % (n - 1 ) + 1 ;
if (Wintess(a, n))
return false ;
}
return true ;
}
int main()
{
__int64 a,p,tmp;
bool prime;
while (scanf( " %I64d%I64d " , & p, & a) != EOF)
{
if (a == 0 && p == 0 )
break ;
prime = miller_rabin(p,TIME);
if ( ! prime) // p不是素数,则判断(a^p)%p=a是否成立
{
tmp = mod_exp(a,p,p);
if (tmp == a)
printf( " yes\n " );
else
printf( " no\n " );
}
else
printf( " no\n " );
}
system( " pause " );
return 0 ;
}