spark svm

首先spark上的svm只能处理线性的,不能处理非线性的。其次spark上的svm求解过程与普通的不同。普通的是通过拉格朗日对偶,然后通过SMO方法求。
但是在spark上,则没有通过拉格朗日,而是直接对损失函数利用随机梯度下降方法进行求解。
那么,svm的损失函数是啥?其实就是个合页函数+正则化。具体的会在< spark 损失函数 >中讲解
为啥spark上的svm没有非线性?因为非线性的那个是通过拉格朗日对偶,然后得到的表达式为一个xi.xj的内积形式,而kernel函数也刚好可以用k(x,z)=f(x)*f(z),所以通过对偶形式可以很方便的用核函数来表示。

所以上面就是的求解就不太容易了,所以一般都是用SMO进行求解。所以这也就是为啥spark没有用kernel的原因,spark求解都是对损失函数来的。不是通过拉格朗日对偶来的。


转载于:https://www.cnblogs.com/sunrye/p/6504892.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值