Codeup 问题 B: 算法7-16:弗洛伊德最短路径算法

题目描述

在带权有向图G中,求G中的任意一对顶点间的最短路径问题,也是十分常见的一种问题。

解决这个问题的一个方法是执行n次迪杰斯特拉算法,这样就可以求出每一对顶点间的最短路径,执行的时间复杂度为O(n3)。

而另一种算法是由弗洛伊德提出的,时间复杂度同样是O(n3),但算法的形式简单很多。

可以将弗洛伊德算法描述如下:

在本题中,读入一个有向图的带权邻接矩阵(即数组表示),建立有向图并按照以上描述中的算法求出每一对顶点间的最短路径长度。

 

输入

输入的第一行包含1个正整数n,表示图中共有n个顶点。其中n不超过50。

以后的n行中每行有n个用空格隔开的整数。对于第i行的第j个整数,如果大于0,则表示第i个顶点有指向第j个顶点的有向边,且权值为对应的整数值;如果这个整数为0,则表示没有i指向j的有向边。当i和j相等的时候,保证对应的整数为0。

输出

共有n行,每行有n个整数,表示源点至每一个顶点的最短路径长度。如果不存在从源点至相应顶点的路径,输出-1。对于某个顶点到其本身的最短路径长度,输出0。

请在每个整数后输出一个空格,并请注意行尾输出换行。

样例输入

<span style="color:#333333">4
0 3 0 1
0 0 4 0
2 0 0 0
0 0 1 0
</span>

样例输出

<span style="color:#333333">0 3 2 1 
6 0 4 7 
2 5 0 3 
3 6 1 0 
</span>

提示

 

在本题中,需要按照题目描述中的算法完成弗洛伊德算法,并在计算最短路径的过程中将每个顶点是否可达记录下来,直到求出每一对顶点的最短路径之后,算法才能够结束。

 

相对于迪杰斯特拉算法,弗洛伊德算法的形式更为简单。通过一个三重循环,弗洛伊德算法可以方便的求出每一对顶点间的最短距离。

 

另外需要注意的是,为了更方便的表示顶点间的不可达状态,可以使用一个十分大的值作为标记。而在题目描述中的算法示例使用了另外一个三维数组对其进行表示,这使原本的O(n3)时间复杂度增长到了O(n4),这也是需要自行修改的部分。

 

 

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;

int n,m,T;
const int INF = 0x3fffffff;
const int MAXV = 100;

int dis[MAXV][MAXV];
void Floyd()
{
	for (int k=0;k<n;k++)
	{
		for (int i=0;i<n;i++)
		{
			for (int j=0;j<n;j++)
			{
				if (dis[i][k] != INF && dis[k][j]!=INF&&dis[i][k] +dis[k][j]<dis[i][j])
				{
					dis[i][j] = dis[i][k]  + dis[k][j];
				}
			}
		}
	}	
}

int main()
{
	int u,v,w;
	fill(dis[0],dis[0]+MAXV*MAXV , INF);
	cin>>n;
	for (int i=0;i<n;i++)
	{
		for (int j=0;j<n;j++)
		{
			cin>>dis[i][j];
			if (dis[i][j]==0 && i!=j)
			dis[i][j] = INF;
		}
	}	
	Floyd();
	
	for (int i=0;i<n;i++)
	{
		for (int j=0;j<n;j++)
		{
			if (dis[i][j]==INF)
			cout<<"-1"<<" ";
			else
			cout<<dis[i][j]<<" ";
		}
		cout<<endl;
	}
	return 0;
}

 

转载于:https://www.cnblogs.com/Romantic-Chopin/p/10253053.html

### 回答1: 迪杰斯特拉最短路径算法是一种用于解决带权有向图中单源最短路径问题算法。该算法的基本思想是:从源点开始,依次确定到各个顶点的最短路径,直到所有顶点的最短路径都被确定。 具体实现过程如下: 1. 初始化:将源点到各个顶点的距离都设为无穷大,将源点到自身的距离设为。 2. 选择当前距离源点最近的未确定最短路径的顶点,将其标记为已确定最 ### 回答2: 迪杰斯特拉最短路径算法(Dijkstra's shortest path algorithm)是解决带权有向图或无向图中,从起点到终点的最短路径问题的经典算法之一。 该算法使用了贪心思想,每次从尚未确定最短路径的节点中选取一条距离起点最近的节点,通过该节点重新更新起点到其它未确定最短路径节点的距离,直到所有节点的最短路径都被确定。 具体实现如下: 1. 初始化:起点到自身的距离为0,其余节点的距离为无穷大。 2. 选择当前可到达且距离起点最近的节点,标记该节点为确定最短路径节点。 3. 更新该节点的邻居节点的距离,若经过当前节点到某个邻居节点的距离比已有距离短,则更新距离。 4. 重复2、3步骤,直到所有节点的最短路径都被确定。 在实际应用中,可以使用优先队列或堆等数据结构来优化算法实现,以提升算法效率。同时,该算法也具有一定的局限性,如不能处理存在负边权的图问题,需要使用另外的算法来解决。 总之,迪杰斯特拉最短路径算法是解决最短路径问题的高效算法之一,在实际应用中具有广泛的应用价值。 ### 回答3: 迪杰斯特拉最短路径算法是一种用于解决带有加权边的最短路径问题算法。该算法的主要思想是从起点开始,通过计算所有节点到起点的距离,并选择距离最短的节点进行扩展。在扩展的过程中,更新已知的最短路径以及每个节点的父节点指向,直到扩展到终点节点或所有节点都被扩展为止。 在算法的实现过程中,首先需要将所有节点的距离初始化为无穷大,并将起点的距离设置为0。然后,将起点加入到一个未访问节点的集合中,并将其标记为已访问。接着,根据起点节点的邻居节点,更新它们的距离和父节点指向,并将它们加入到未访问节点的集合中。之后,从未访问节点的集合中选择距离最短的节点进行扩展,并重复之前的步骤,直到终点节点被扩展或所有节点都被扩展为止。 迪杰斯特拉最短路径算法的时间复杂度为O(n^2),其中n为节点的数量。在实际应用中,该算法也可以通过采用优先队列等数据结构来优化,从而达到更好的时间复杂度。 总之,迪杰斯特拉最短路径算法在现代计算机科学中应用广泛。它可以用于建立地图应用、路由算法、网络流量控制以及许多其他应用领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值