响应曲面法及其在食品中的应用
摘要:响应面方法是利用合理的试验设计并通过对实验数据进行一定的处理,建立影响因素与响应值之间的函数关系,得到一个回归方程,通过对回归方程进行分析,选择最优工艺参数。这种方法现在已经广泛应用于食品的工艺配方设计及加工工艺条件的优化。本文就响应面方法的优点、试验设计的方法以及实验数据的处理进行了简单的阐述,对其应用的限制因素进行一一说明。
关键词:响应面方法;试验设计;回归方程;优化条件
1、概述
随着计算机技术的飞速发展,数值计算科学的不断深入,工程计算的模型越来越复杂,计算规模越来越大,所花费的机时越来越长。同时,许多工程问题的目标函数和约束函数对于设计变量经常是不光滑的或者具有强烈的非线性。这样,科学家和工程师都希望寻找新的高效可靠的数学规划方法以满足工程优化计算的需要。一个渐进近似的优化方法能很好地解决这种既耗机时又非光滑的优化问题,它就是响应面(Response Surface Methodology,简称:RSM)。
RSM是数学方法和统计方法结合的产物,是用来对所感兴趣的响应受多个变量影响的问题进行建模和分析的,其最终目的是优化该响应值[1]。由于RSM 把仿真过程看成一个黑匣子,能够较为简便地与随机仿真和确定性仿真问题结合起来,所以得到了非常广泛的应用。
近十多年来,由于统计学在各个领域中的发展和应用,RSM的应用领域进一步拓宽,对RSM感兴趣的科学工作者也越来越多,许多学者对响应面法进行了研究。RSM的应用领域不再仅仅局限于化学工业,在生物学、医学以及生物制药领域都得到了广泛应用。同时,食品学、工程学、生态学等方面也都涉及到了响应面法的应用[2-5]。
2、响应面法
响应面法(Response Surface Methodology)是利用合理的试验设计,采用多元二次回归方程拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法[6]。用响应面法优化工艺过程主要涉及三步:实验设计,建立数学模型评估相关性,预测响应值考察模型的准确性[7]。随着计算机的发展,它已成为精度高、应用广并具有使用价值的优化技术。响应值和变量之间的关系可以形象地用响应面表示出来,它可以分为3个方面:(1)描述单个试验变量时响应值的影响;(2)确定试验变量之间的相关关系;(3)描述所有试验变量对响应值的综合影响。
2.1RSM的四个步骤
(1)确定因素:就是确定要考察的过程中的关键因素,即研究范围内主要影响加工过程和产品质量的重要因素。用RSM来研究的因素一般为两到三个;当然RSM也可以研究多变量问题,但其结果比较复杂。
(2)确定因素水平:通过做单因素试验或由样品的特性和工艺来确定因素水平