OpenCV---直方图反向投影

一:直方图反向投影的方法

二:二维直方图的表示

(一)直接显示

def hist2D_demo(image):
    hsv = cv.cvtColor(image,cv.COLOR_BGR2HSV)
    hist = cv.calcHist([image],[0,1],None,[289,286],[0,289,0,286])
    cv.imshow("hist2D",hist)

(二)使用matplotlib

def hist2D_demo(image):
    hsv = cv.cvtColor(image,cv.COLOR_BGR2HSV)
    hist = cv.calcHist([image],[0,1],None,[289,286],[0,289,0,286])
    plt.imshow(hist,interpolation="nearest")
    plt.title("2D Histogram")
    plt.show()

三:直方图反向映射

calcHist方法参数可见:OpenCV---图像直方图

def back_projection_demo():
    sample = cv.imread("./s2.png")
    target = cv.imread("./b.png")
    roi_hsv = cv.cvtColor(sample,cv.COLOR_BGR2HSV)
    tar_hsv = cv.cvtColor(target,cv.COLOR_BGR2HSV)

    cv.imshow("sample",sample)
    cv.imshow("target",target)

    roihist = cv.calcHist([roi_hsv], [0, 1], None, [324, 356], [0, 324, 0, 356])  #加红部分越小,匹配越放松,匹配越全面,若是bsize值越大,则要求得越精细,越不易匹配,所以导致匹配出来的比较小
    cv.normalize(roihist,roihist,0,255,cv.NORM_MINMAX)  #规划到0-255之间
    dst = cv.calcBackProject([tar_hsv],[0,1],roihist,[0,324,0,356],1)   #直方图反向投影
    cv.imshow("back_projection_demo",dst)

roihist = cv.calcHist([roi_hsv], [0, 1], None, [32, 46], [0, 324, 0, 356])  #这是两个通道,bsize变少了,但是他的匹配更加广了(对于匹配的局限放宽了)

 

opencv 2 归一化函数normalize详解

1. 归一化就是要把需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。

归一化函数cv2.normalize原型:normalize(src, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]) -> dst 

src参数表示输入数组。

dst参数表示输出与src相同大小的数组,支持原地运算。

alpha参数表示range normalization模式的最小值。

beta参数表示range normalization模式的最大值,不用于norm normalization(范数归一化)模式。

norm_type参数表示归一化的类型。

norm_type参数可以有以下的取值:

NORM_MINMAX:数组的数值被平移或缩放到一个指定的范围,线性归一化,一般较常用。

NORM_INF:归一化数组的C-范数(绝对值的最大值)。

NORM_L1 :归一化数组的L1-范数(绝对值的和)。

NORM_L2 :归一化数组的(欧几里德)L2-范数。
2.反向投影用于在输入图像(通常较大)中查找特定图像(通常较小或者仅1个像素,以下将其称为模板图像)最匹配的点或者区域,也就是定位模板图像出现在输入图像的位置。

函数cv2.calcBackProject用来计算直方图反向投影。

函数原型:calcBackProject(images, channels, hist, ranges, scale[, dst]) -> dst

images参数表示输入图像(是HSV图像)。传入时应该用中括号[ ]括起来。

channels参数表示用于计算反向投影的通道列表,通道数必须与直方图维度相匹配。

hist参数表示输入的模板图像直方图。

ranges参数表示直方图中每个维度bin的取值范围 (即每个维度有多少个bin)。

scale参数表示可选输出反向投影的比例因子,一般取1。

 

转载于:https://www.cnblogs.com/ssyfj/p/9271327.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值