拐点,又叫做反曲点,从字面意思上来说,拐就是拐弯的意思,顾名思义,指的是改变曲线向上或者向下方向的点,也可以说拐点是使切线穿越曲线的点。
那么拐点和二阶导函数之间有什么关系呢,我们一般说如果某曲线图形函数在拐点有二阶导数,则二阶导数载拐点处异号(正到负或者负到正)或者说不存在。
那么我们一般怎么来求拐点呢,我们往往有如下步骤:
1、求该曲线图形函数的二阶导数。
2、令该曲线图形函数的二阶导数等于零,解出该方程在区间内的实数根,并求出在该区间内二阶导数不存在的根。
3、对于第二个步骤求出来的根或者说二阶导数不存在的点,我们就可以进行观察了,检查二阶导数在该点左右两侧邻近的符号,当两侧的符号相反时,很明显,该点满足异号这个条件,就说明该点是拐点,反之,该点不是拐点。
话不多说,我们来看一道实际例题,这道题目是2015年考研数学一的第一题,难度不是很大,只需要判断异号的个数即可。

图一
如图所示,这道题已经很友善了,直接给出二阶导函数f''(x)的图形,直接让我们求拐点。
那我们就可以直接得到一些信息,在x1点和x2点两个点的时候,该二阶导函数的值为零。
我们可以观察,得到x1左右两侧同号,所以x1不是拐点,排除。
x2左右两侧异号,所以x2是拐点,选择。
但是我们要注意,这里还有一个情况,那就是0这个点,由前面的信息可得,在0这个点处,二阶导函数不存在,并且点0左右异号,所以0也是一个拐点。
综上所述,这道题目的答案就应该选C。
总结一下,遇到这种题目,只需要掌握拐点的概念即可,难度不大,仔细一点就肯定没什么问题,关键还在于二阶导数等于零和二阶导数不存在求出的点可能是拐点,最后再用左右是否同号还是异号来进行判断即可。