判断办法:(1)求这个函数的二阶导数;(2)若二阶导数在这个点的左边和右边的正负性不同,则这个点便是拐点;若在这个点的左边和右边的正负性相同,则这个点就不是拐点。
拐点的必要条件
设f(x)在(a,b)内二阶可导,x0∈(a,b),若(x0,f(x0))是曲线y=f(x)的一个拐点,则f‘’(x0)=0。
拐点的充分条件
设f(x)在(a,b)内二阶可导,x0∈(a,b),则f‘’(x0)=0,若在x0两侧附近f‘’(x0)异号,则点(x0,f(x0))为曲线的拐点。否则(即f‘’(x0)保持同号,(x0,f(x0))不是拐点。
当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。
若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。同时,假如c是拐点,必然有f''(c)=0或者f''(c)不存在;反之则不成立;例如,f(x)=x^4,有f''(0)=0,可是0两侧全是凸,因此0不是函数f(x)=x^4的拐点。
好了,关于拐点的判断这个问题学好网老田就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!我曾经也一味地以为,学习是痛苦的。在题海中,我无法自拔。在书堆中,我欲哭无泪。我只是拼命地写着,拼命地记着,拼命地应付考试,仅此而已。但现在,我告诉自己,学习是快乐的。在学习的花香中,我微笑着,我沉醉着。